Разработка алгоритмов распознавания символов на изображениях табличек домов

Белков, Сергей Геннадьевич Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Целью работы является повышение эффективности распознавания символов на изображениях со сложным фоном. Результаты работы могут быть использованы в организациях, решающих задачи компьютерного зрения и распознавания символов.

ВВЕДЕНИЕ ……………………………………………………………………………………………… 14

1 АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ …………………………………………………… 15

1.1 Описание проблемы ………………………………………………………………………… 15

1.2 Описание адресных табличек ………………………………………………………….. 15

1.3 Описание машинного обучения ………………………………………………………. 17

1.4 Искусственные нейронные сети ………………………………………………………. 18

1.4.1 Общее описание ………………………………………………………………………. 18

1.4.2 Обобщенная структура ИНС ……………………………………………………. 19

1.4.3 Нейроны смещения ………………………………………………………………….. 22

1.4.4 Метод градиентного спуска ……………………………………………………… 25

1.4.5 Метод обратного распространения …………………………………………… 26

1.5 Описание сверточной нейронной сети …………………………………………….. 27

1.5.1 Свертка ……………………………………………………………………………………. 28

1.5.2 Субдискретизация ……………………………………………………………………. 29

1.5.3 Softmax ……………………………………………………………………………………. 30

1.6 Описание алгоритма ближайших соседей ………………………………………… 30

1.7 Анализ существующий решений……………………………………………………… 31

1.8 Вывод по разделу 1 …………………………………………………………………………. 32

2 РАЗРАБОТКА АЛГОРИТМА ………………………………………………………………. 33

2.1 Описание алгоритма ……………………………………………………………………….. 33

2.2 Предобработка изображения …………………………………………………………… 34

2.2.1 Преобразование в градации серого …………………………………………… 34

2.2.2 Пороговая классификация изображения …………………………………… 35

2.2.3 Поиск сегментов изображения …………………………………………………. 36
2.3 Выбор структуры ИНС ……………………………………………………………………. 37

2.3.1 Структура для распознавания таблички ……………………………………. 37

2.3.2 Структура для распознавания символа …………………………………….. 39

2.4 Формирование обучающей выборки ……………………………………………….. 40

2.5 Обучение ИНС………………………………………………………………………………… 41

3 ПРОГРАММНАЯ РЕАЛИЗАЦИЯ ………………………………………………………… 42

3.1 Используемые технологии ………………………………………………………………. 42

3.2 Программные модули ……………………………………………………………………… 42

3.2.1 Augment …………………………………………………………………………………… 43

3.2.2 KNN ……………………………………………………………………………………… 43

3.2.3 CNN ……………………………………………………………………………………… 43

3.2.4 Dataset ……………………………………………………………………………………… 43

4 ОБУЧЕНИЕ И ТЕСТИРОВАНИЕ …………………………………………………………. 44

4.1 Входные данные ……………………………………………………………………………… 44

4.2 Статистика обучения и распознавания …………………………………………….. 45

4.3 Демонстрация распознавания ………………………………………………………….. 46

5 ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И
РЕСУРСОСБЕРЕЖЕНИЕ…………………………………………………………………………. 49

5.1 Предпроектный анализ ……………………………………………………………………. 49

5.1.1 Анализ конкурентных технических решений ……………………………. 49

5.2 FAST-анализ …………………………………………………………………………………… 51

5.3 SWOT-анализ ………………………………………………………………………………….. 54

5.4 Оценка готовности проекта к коммерциализации…………………………….. 56

5.5 Инициация разработки ……………………………………………………………………. 57

5.6 Организация и планирование работ …………………………………………………. 59
5.6.1 Иерархическая структура работ ……………………………………………….. 59

5.6.2 План разработки ………………………………………………………………………. 59

5.6.3 Продолжительность этапов работ …………………………………………….. 60

5.6.4 Расчет нарастания технической готовности работ …………………….. 63

5.7 Расчет сметы затрат ………………………………………………………………………… 65

5.7.1 Расчет заработной платы………………………………………………………….. 65

5.7.2 Расчет отчислений от заработной платы …………………………………… 66

5.7.3 Расчет амортизации …………………………………………………………………. 66

5.7.4 Расчет накладных расходов ……………………………………………………… 67

5.7.5 Расчет общей сметы …………………………………………………………………. 67

5.8 Оценка научно-технического уровня НИР……………………………………….. 67

5.9 Вывод по разделу 5 …………………………………………………………………………. 70

6 СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ ………………………………………………… 71

6.1 Правовые и организационные вопросы обеспечения безопасности ….. 71

6.2 Правовые нормы трудового законодательства …………………………………. 71

6.2.1 Организационные мероприятия при компоновке рабочей зоны … 72

6.3 Производственная безопасность ……………………………………………………… 74

6.3.1 Отклонение показателей микроклимата……………………………………. 75

6.3.2 Превышение уровня шума ……………………………………………………….. 76

6.3.3 Недостаточность освещенности рабочей зоны ………………………….. 77

6.3.4 Повышенный уровень электромагнитных полей ………………………. 78

6.3.5 Повышенное значение напряжения в электрической цепи, замыкание
которой может произойти через тело человека. …………………………………… 79

6.4 Экологическая безопасность……………………………………………………………. 79

6.5 Безопасность в чрезвычайных ситуациях…………………………………………. 80
ЗАКЛЮЧЕНИЕ ……………………………………………………………………………………….. 83

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ …………………………………………. 84

ПРИЛОЖЕНИЕ А ……………………………………………………………………………………. 87

ПРИЛОЖЕНИЕ Б …………………………………………………………………………………… 100

Способность автоматически распознать адрес на фотографии с гео-
привязкой и связывать обработанный номер с известным адресом улицы,
помогает с высокой степенью точности определить местоположение здания.
Классическим примеров таких фотографий являются изображения с «Google
Street View» и «Яндекс.Панорамы», состоящие из большого количества
географически привязанных панорамных изображений.
Для решения задачи распознавания адресных табличек могут быть
применены искусственные нейронные сети (ИНС) с предварительной
обработкой изображения. Разработка алгоритма распознавания на основе ИНС
позволит достичь высокой скорости идентификации адреса для различных сфер
применения.
Целью данной работы является разработка алгоритма распознавания
адресных табличек домов с использованием нейронных сетей.
Задачи:
 Изучение форматов табличек домов
 Изучение средств и методов, необходимых для обработки и
распознавания изображений
 Разработка алгоритма

В работе представлен анализ существующих видов адресных табличек
домов. Составлен алгоритм для распознавания адресных табличек домов с
использованием сверточной нейронной сети. Для составления алгоритма
изучены методы обработки и классификации изображений. Алгоритм включает
в себя предобработку изображения, сегментирование и последующую
классификацию. В качестве алгоритма классификации было проведено
сравнение точностей распознавания между сверточной нейронной сетью и
алгоритмом ближайшего соседа, что показало целесообразность применения
сверточной нейронной сети. Составлена архитектура для двух сверточных
ИНС: для детектирования адресной таблички и для распознавания символов.
В качестве демонстрации алгоритмов разработано консольное
приложение на языке Python. В приложении реализованы как этап
предобработки изображения, так и классификации. Классификация сегментов
выполнена с помощью сверточной ИНС с обратным распространением ошибки
и функцией активации ReLU. Максимальная точность распознавания в ходе
экспериментов достигала 89%

1.ГОСТР52290-2004//Федеральноеагентствопотехническому
регулированию и метрологии. – Москва, 2006. – 125 с
2.Нейронные сети для начинающих [Электронный ресурс]. – URL:
https://habr.com/ru/post/312450/. (Дата обращения 15.03.2019).
3.Глава 3. Основы ИНС // Нейронные сети [Электронный ресурс]. – URL:
https://neuralnet.info/chapter/основы-инс (Дата обращения 15.03.2019).
4.Вишник М.И. Обобщенные функции // Соровосовский образовательный
журнал. – 1997. – №12. С. 112-117.
5.Знакомство с машинным обучением // Google stories [Электронный
ресурс].–URL:https://www.google.com/intl/ru/about/stories/machine-
learning-qa/. (Дата обращения 15.03.2019).
6.Преобразование цветного изображения в черно-белое // Программирование
на C, C# и Java [Электронный ресурс]. – URL: https://vscode.ru/prog-
lessons/preobrazovanie-tsvetnogo-izobrazheniya-v-cherno-beloe.html.(Дата
обращения 15.03.2019).
7.OpenCV[Электронныйресурс].–URL:https://opencv.org/.(Дата
обращения 15.03.2019).
8.Янковский А.А., Бугрий А.Н.. Критерии выбора метода бинаризации при
обработке изображений лабораторных анализов // Научно-технический
журнал «АСУ и приборы автоматики». – 2010. – №153. С. 53-56.
9.Пелевин Е.Е., Балясный С.В.. Оптимальные алгоритмы выделения
контуров изображения в системе технического зрения // Juvenis scientia. –
2016. – №6. С. 6-8.
10. Хайкин С. Нейронные сети. – 2-е изд. – М.: Вильямс, 2006. – 1103с
11. Джонс М. Программирование искусственного интеллекта в приложениях /
М.Джонс: Пер. с англ. Осипов А.И. – М.: ДМК Пресс, 2013. – 312 с
12. Градиентныйспуск[Электронныйресурс].–URL:
https://ru.wikipedia.org/wiki/Градиентный_спуск.(Датаобращения
15.03.2019).
13. Николенко С., Кадурин А., Архангельская Е. Глубокое обучение – 1-е изд.
– СПб.: Питер, 2018. – 480 с.
14.Street View and reCAPTCHA technology just got smarter [Электронный
ресурс]. – URL: https://security.googleblog.com/2014/04/street-view-and-recaptcha-
technology.html. (Дата обращения 20.04.2019).
15.Multi-digit Number Recognition from Street View Imagery using Deep
ConvolutionalNeuralNetworks[Электронныйресурс].–URL:
https://arxiv.org/abs/1312.6082. (Дата обращения 20.04.2019).
16.ImageNet Classification with Deep Convolutional Neural Networks
[Электронныйресурс].–URL:http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf.(Датаобращения
22.04.2019).
17.Нейронные сети для начинающих. [Электронный ресурс]. – URL:
https://habr.com/ru/post/313216/. (Дата обращения 22.04.2019).
18.Python. [Электронный ресурс]. – URL: https://www.python.org/. (Дата
обращения 10.03.2019).
19.OpenCV. [Электронный ресурс]. – URL: https://www.opencv.org/. (Дата
обращения 10.03.2019).
20.TensorFlow. [Электронный ресурс]. – URL: https://www.tensorflow.org/.
(Дата обращения 10.03.2019).
21.Трудовой кодекс Российской Федерации. [Электронный ресурс]. – URL:
http://www.consultant.ru/document/cons_doc_LAW_34683/.(Датаобращения
10.05.2019).
22.ГОСТ12.2.032-78.[Электронныйресурс].–URL:
http://docs.cntd.ru/document/1200003913/. (Дата обращения 10.05.2019).
23.ГОСТ12.2.061-81ССБТ.[Электронныйресурс].–URL:
http://docs.cntd.ru/document/gost-12-2-061-81-ssbt. (Дата обращения 10.05.2019).
24.СанПиН2.2.2/2.4.1340-03.[Электронныйресурс].–URL:
http://docs.cntd.ru/document/901865498. (Дата обращения 10.05.2019).
25.ГОСТ12.0.003-2015.[Электронныйресурс].–URL:
http://docs.cntd.ru/document/1200136071. (Дата обращения 10.05.2019).
26.ГОСТ12.0.003-2015.[Электронныйресурс].–URL:
http://docs.cntd.ru/document/1200136071. (Дата обращения 10.05.2019).
27.СанПиН2.2.4.548-96.[Электронныйресурс].–URL:
http://docs.cntd.ru/document/901704046. (Дата обращения 10.05.2019).
28.ГОСТ12.1.003-2014[Электронныйресурс].–URL:
http://docs.cntd.ru/document/1200118606. (Дата обращения 10.05.2019).
29.СанПиН2.2.4.3359-16[Электронныйресурс].–URL:
http://docs.cntd.ru/document/420362948. (Дата обращения 10.05.2019).
30.СанПиН2.2.1/2.1.1.1278-03[Электронныйресурс].–URL:
http://docs.cntd.ru/document/901859404. (Дата обращения 10.05.2019).
31.ГОСТ12.1.006–84[Электронныйресурс].–URL:
http://docs.cntd.ru/document/5200272. (Дата обращения 10.05.2019).
32.СанПиН2.2.2/2.4.1340–03[Электронныйресурс].–URL:
http://docs.cntd.ru/document/901865498. (Дата обращения 10.05.2019).
33.Николенко С., Кадурин А., Архангельская Е. Глубокое обучение – 1-е
изд. – СПб.: Питер, 2018. – 480 с.
34.КриницынаЗ.В.,ВидяевИ.Г.Финансовыйменеджмент,
ресурсоэффективность и ресурсосбережение / З.В. Криницына, И.Г. Видяев;
Томскийполитехническийуниверситет.–Томск:Изд-воТомского
политехнического университета, 2014. – 73 с

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Татьяна П.
    4.2 (6 отзывов)
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки ... Читать все
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки в одном из крупнейших университетов Германии.
    #Кандидатские #Магистерские
    9 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Евгений А. доктор, профессор
    5 (154 отзыва)
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - ... Читать все
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - по социальной работе.
    #Кандидатские #Магистерские
    260 Выполненных работ
    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа
    Мария Б. преподаватель, кандидат наук
    5 (22 отзыва)
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальнос... Читать все
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальности "Экономика и управление народным хозяйством". Автор научных статей.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Ксения М. Курганский Государственный Университет 2009, Юридический...
    4.8 (105 отзывов)
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитыв... Читать все
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитывать все требования и пожелания.
    #Кандидатские #Магистерские
    213 Выполненных работ
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ

    Другие учебные работы по предмету

    Модернизация системы автоматизации АСУ ТП АО «Farg’onaazot»
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Интеграционный сервис передачи данных между АСУ ТП и MES
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Методы сегментации новообразований головного мозга
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)