Построение и особенности адаптации гидродинамической модели с учетом неоднородности коллектора нефтяного месторождения “Х” (Томская область)
В данной работе рассмотрены особенности построения и адаптации гидродинамической модели нефтяного месторождения Томской области в условиях высокой расчлененности коллектора.
Содержание ……………………………………………………………………………………………. 13
Введение ……………………………………………………………………………………………….. 15
1 Обзор литературы ………………………………………………………………………………… 18
1.1 Геологическая модель ……………………………………………………………………….. 18
1.2 Гидродинамическая модель ……………………………………………………………….. 19
1.3 Основные уравнения фильтрации жидкости и газа ………………………………. 21
2 Объект и методы исследования …………………………………………………………….. 27
2.1 Общие сведения о месторождении ……………………………………………………… 27
2.2 Геолого-физическая характеристика месторождения …………………………… 29
2.2.1 Геолого-физическая изученность района ………………………………………….. 29
2.2.2 Литолого-стратиграфический разрез ………………………………………………… 30
2.2.3 Тектоника ………………………………………………………………………………………. 33
2.2.4 Нефтеносность ……………………………………………………………………………….. 35
2.2.5 Характеристика продуктивных коллекторов по данным ГИС ……………. 38
2.2.6 Анализ испытания, опробования и ГДИ разведочных скважин ………….. 39
2.2.7 Коэффициенты вытеснения …………………………………………………………….. 41
2.2.8 Фазовые проницаемости …………………………………………………………………. 42
2.2.9 Капиллярные давления ……………………………………………………………………. 44
2.3 Сведения о составе и свойствах нефти ……………………………………………….. 45
2.4 Сводная геолого-физическая характеристика продуктивных пластов …… 46
2.5 Оценка исходной информации для проектирования …………………………….. 46
2.6 Программные комплексы …………………………………………………………………… 47
3 Расчеты и аналитика ……………………………………………………………………………. 48
3.1 Построение гидродинамической модели …………………………………………….. 48
3.2 Обзор вариантов разработки ………………………………………………………………. 54
4 Результаты проведенного исследования ………………………………………………… 57
5 Технико-экономический анализ вариантов разработки …………………………… 58
5.1 Экономические показатели ………………………………………………………………… 58
5.2 Макроэкономические показатели и расчеты чистых цен УВС ……………… 61
5.3 Налоговая система …………………………………………………………………………….. 62
5.4 Обоснование коэффициентов извлечения углеводородов …………………….. 63
5.5 Оценка капитальных, текущих, эксплуатационных и внереализационных
расходов ………………………………………………………………………………………………… 65
5.6 Технико-экономическое обоснование выбора рекомендуемого варианта . 66
5.7 Анализ чувствительности проекта ……………………………………………………… 69
Выводы …………………………………………………………………………………………………. 71
6 Социальная ответственность ………………………………………………………………… 72
6.1 Производственная безопасность ………………………………………………………… 73
6.1.1 Анализ вредных факторов ………………………………………………………………. 73
6.1.1.1 Отклонение показателей микроклимата в помещение …………………….. 74
6.1.1.2 Повышенный уровень шума …………………………………………………………. 75
6.1.1.3 Повышенный уровень электромагнитных излучений ……………………… 75
6.1.1.4 Недостаточная освещенность рабочей зоны …………………………………… 76
6.1.2 Анализ выявленных опасных факторов проектируемой производственной
среды …………………………………………………………………………………………………….. 77
6.1.2.1 Электрический ток ………………………………………………………………………. 77
6.2 Экологическая безопасность ……………………………………………………………… 79
6.3 Безопасность в чрезвычайных ситуациях ……………………………………………. 81
6.3.1 Пожарная безопасность на рабочем месте ………………………………………… 82
6.4 Правовые и организационные вопросы обеспечения безопасности ………. 83
6.4.1 Эргономические условия работы на ПЭВМ ……………………………………… 84
Заключение ……………………………………………………………………………………………. 87
Список использованных источников ……………………………………………………….. 88
Приложения …………………………………………………………………………………………… 90
Гидродинамическое моделирование — мощный инструмент для
планирования и управления разработкой нефтяных месторождений. Роль
моделирования постоянно растет по мере увеличения вычислительной
мощности и расширения области применения вычислительных машин.
На сегодняшний день в связи с наличием огромного количества
современных программных комплексов, основанных на численном решении
дифференциальных уравнений, описывающих процесс фильтрации, возможен
расчет десятков, а порой и нескольких сотен различных сценариев разработки
месторождений углеводородов. Благодаря моделированию стало возможным
получение наилучших экономические показателей, а также наибольших
коэффициентов извлечения углеводородов в каждом конкретном случае.
Однако немало важным фактором является контроль качества модели, от
входных данных и до прогнозных вариантов, во избежание неприятных
последствий, таких как некорректные прогнозные данные [1].
Учитывая производство полной адаптации истории модели, а также ее
прогноз, инженерам удается наиболее оптимально и рентабельно разрабатывать
месторождения углеводородов. К основным этапам подготовительных и
эксплуатационных работ относятся:
сейсмический анализ;
бурение эксплуатационное и разведочное;
геофизическое изучение скважин (ГИС),
лабораторное исследование керна и флюидов,
анализ и выявление петрофизических зависимостей,
построение трехмерной ГТМ (геологической и
гидродинамической),
прогнозирование показателей вариантов разработки.
В настоящее время технологии моделирования шагнули далеко вперёд,
позволяя учесть множество различных факторов, присущих каждому
конкретному месторождению.
Использование прогноза поведения пласта позволяет решать проблемы
связанные с планированием, эксплуатацией и диагностикой на любой стадии
разработки месторождения. Современные методы моделирования
предоставляют возможность планирования разработки и принятия текущих
решений на месторождениях любого уровня, размера и сложности. [2].
В данной работе запланировано построение гидродинамической модели
месторождения Томской области с высокой расчленённостью коллектора.
Актуальность работы связана с тем, что в настоящее время существенно
повышаются требования к качеству цифровых геолого-технологических
моделей месторождений . Как показывает практика, наиболее перспективный
путь в этом направлении – поиск оптимальной пространственной детальности и
увеличение физической содержательности гидродинамических моделей . В
диссертации продолжено рассмотрение реализации такой идеологии на
примерах гидродинамической модели пласта Х месторождения N. В частности,
продолжено обсуждение вопроса о влиянии фильтрационно-емкостных свойств
(ФЕС) и пространственных характеристик глинистых тел на процесс
разработки месторождений.
Главной целью работы является построение фильтрационной модели
месторождения, исследование основных принципов построения и адаптации
модели месторождения с Томской области с высокой расчлененностью
коллектора, решение сопутствующих проблем и использование их на практике.
Исследовался пласт Х месторождения N Томской области. Данный
пласт был выбран, так как имеет явную расчлененность коллектора, небольшой
фонд скважин и находится в разработке.
Также были определены основные задачи для успешного достижения
поставленной цели:
Изучение основных правил построения геологических и
гидродинамических моделей месторождений;
Получение навыков работы в ведущих программных пакетах для
построения ГТМ;
Построение гидродинамической модели и адаптация ее истории;
Заключение об особенностях моделирования и адаптации данной
с
Основной целью данной работы являлось построение
гидродинамической модели нефтяного месторождения Томской области в
условиях высокой расчлененности коллектора, а также изучение основных
особенностей и проблем процедуры адаптации данных типов месторождений.
Были решены следующие задачи: освоение принципов моделирования
нефтяных месторождения в условиях наличия глин и низкой
гидродинамической связи коллекторов, изучение основных программных
комплексов моделирования и непосредственное построение корректной
гидродинамической модели.
Все поставленные цели и задачи были достигнуты в ходе выполнения
данной работы. Во-первых, была проанализирована научно-техническая
литература и изучена последовательность и методика построения
гидродинамической модели. Во-вторых, опираясь на изученную методику
была смоделирована ГДМ нефтяного месторождения Томской области и
исследована зависимость влияния наличия и ФЕС глин на корректность
гидродинамической модели, в частности корректного моделирования
пластового давления. Полученная смоделированная симуляция прошла
проверку и независимую экспертизу, в результате чего можно отнести данную
модель к корректной, отображающей процессы фильтрации в пласте и на
основе данной модели возможно построение прогнозных вариантов.
На базе спроектированной модели сформировались прогнозные
варианты. Основываясь на анализ экономической эффективности был
подготовлен рекомендуемый сценарий разработки.
При реализации рекомендуемого варианта разработки объекта Х
месторождения N, капитальные вложения в разработку за расчетный период
составят 362 млн. руб. Рентабельный срок разработки составит 7 лет. Добыча
нефти за расчетный период составит 265,879 тыс. т., КИН – 0,3835 д.ед. Чистый
доход пользователя недр- 1028,7 млн. руб, дисконтированный доход
государства- 2195 млн. руб.
Последние выполненные заказы
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!