Разработка высокопроизводительного устройства размагничивания длинномерных изделий.

Болдырев, Петр Андреевич Отделение контроля и диагностики (ОКД)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Работа посвящена разработке устройства размагничивания, реализующее метод, основанный на использовании постоянного магнитного поля, корректируемого по измеряемым в процессе размагничивания начальной и остаточной намагниченностям, является наиболее приемлемым при поточном контроле изделий, либо конвейерном размагничивании, из-за высокого быстродействия, низкого энергопотребления и достаточно высокого качества размагничивания. После проведения размагничивания остаточная намагниченность находится в рамках не препятствующих проведению сварки (менее 0,01 Тл), и не вызывает налипания ферромагнитных частиц более 0,1 мм.

Введение ……………………………………………………………………………………………………… 11

1 Размагничивание. Способы размагничивания ферромагнитных изделий ……. 13

2 Методы размагничивания………………………………………………………………………………………………. 19

2.1 Нагрев до температуры точки Кюри ……………………………………………………….. 19

2.2 Размагничивание знакопеременным магнитным полем с убывающей до нуля
амплитудой …………………………………………………………………………………………………. 22

2.2.1 Практические конструкции установок и устройств для размагничивания
ферромегнитных сталей ………………………………………………………………………………. 25

2.2.2 Автоматические устройства размагничивания ………………………………….. 26

2.2.2.1 Демагнетизатор DS10M ……………………………………………………………………. 26

2.3 Размагничивание в постоянных магнитных полях обратной полярности …. 29

2.3.1 Демагнетизатор ДМ – 404 …………………………………………………………………….. 31

2.4 Комбинированный метод размагничивания…………………………………………….. 32

2.4.1 Устройства размагничивания FOERSTER EMAG M/EMAG F ……………… 32

3 Рекомендации по применению методов …………………………………………………….. 33

4 Экспериментальные исследования…………………………………………………………….. 34

4.1 Получение опытных данных для построения петель гистерезиса …………….. 34

5 Разработка принципиальной схемы …………………………………………………………… 38

5.1 Рассчет индукционной обмотки ……………………………………………………………… 38

5.2 Рассчет фильтра высоких частот …………………………………………………………….. 39

5.3 Выбор АЦП ……………………………………………………………………………………………. 39

5.4 Выбор микроконтроллера ………………………………………………………………………. 42

5.5 Рассчет обмотки намагничивания …………………………………………………………… 44

5.6 Расчет усилителя мощности …………………………………………………………………… 46
5.7 Выбор и подключение ЦАП……………………………………………………………………. 47

5.8 Выбор схемы индикации ………………………………………………………………………… 48

5.9 Построение связи микропроцессором с ПК …………………………………………….. 50

6 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение……. 54

6.1 Введение ………………………………………………………………………………………………… 54

6.2 Анализ конкурентных технических решений с позиции
ресурсоэффективности и ресурсосбережения……………………………………………….. 56

6.3 SWOT – анализ ……………………………………………………………………………………….. 59

6.4 План проекта ………………………………………………………………………………………….. 64

6.5 Бюджет научного исследования ……………………………………………………………… 66

6.5.1 Основная заработная плата ………………………………………………………………….. 68

6.5.2 Дополнительная заработная плата научно – производственного персонала
……………………………………………………………………………………………………………………. 71

6.6 Отчисления на социальные нужды …………………………………………………………. 72

6.7 Оплата работ, выполняемых сторонними организациями и предприятиями72

6.8 Накладные расходы………………………………………………………………………………… 73

6.9 Выводы по разделу…………………………………………………………………………………. 74

7 Социальная ответственность …………………………………………………………………….. 77

7.1 Введение ………………………………………………………………………………………………… 77

7.2 Производственная безопасность……………………………………………………………… 77

7.2.1 Анализ выявленных вредных факторов, возникающих при работе с
устройством ………………………………………………………………………………………………… 78

7.2.2 Анализ опасных факторов производственной среды………………………………81

7.3 Экологическая безопасность …………………………………………………………………… 83

7.4 Безопасность в чрезвычайных ситуациях ………………………………………………… 84
7.5 Правовые и организационные мероприятия обеспечения безопасности …… 85

7.5.1 Специальные (характерные для рабочей зоны исследователя) правовые
нормы трудового законодательства ……………………………………………………………… 85

7.5.2 Организационные мероприятия при компоновке рабочей зоны
исследователя ……………………………………………………………………………………………… 86

Заключение …………………………………………………………………………………………………. 88

Список публикаций студента ……………………………………………………………………….. 89

Список использованных источников ……………………………………………………………. 90

Приложение А ……………………………………………………………………………………………. 95

Приложение Б ……………………………………………………………………………………………. 113

«При осуществлении магнитного и вихретокового контроля изделий из
ферромагнитных материалов, как правило, применяется их намагничивание до
состояния близкого техническому насыщению. В первом случае эта операция
относится к числу основных для данного вида контроля, во втором –
осуществляется как вспомогательная для уменьшения влияния магнитных
неоднородностей на результаты контроля. Намагничивание изделий может
также произойти в результате сварочных работ, механической обработки,
использовании электромагнитов для перемещения или фиксации деталей и т.п.
При дуговой сварке конструкций из высокопрочных сталей нередко
наблюдается случаи возникновения «магнитного дутья». Оно является
следствием существования значительных магнитных полей в конструкциях и
нарушает стабильность процесса сварки, увеличивает разбрызгивание
электродного металла, ухудшает формирование шва»[1]. Известны случаи,
когда уровни магнитных полей столь велики, что процесс сварки становится
невозможным вследствие «сдувания» дуги и выброса жидкого металла
сварочной ванны. Опыт показывает, что швы, сварка которых сопровождалась
«магнитным дутьем», как правило, содержат дефекты, и в дальнейшем
необходима повторная заварка таких швов[2].
Магнитные поля в изделиях существенно усложняют и процесс
электроннолучевой сварки, отводя пучок электронов от места сварки или делая
его неуправляемым.
В то же время установлено, что максимальные значения индукции на
открытых кромках некоторых конструкций из высокопрочных сталей могут
достигать 0,01…0,017 Тл, а после сборки отдельных элементов под сварку, в
результате наложения магнитных полей, индукция в зазорах увеличивается в 5
– 10 раз и может превышать 0,1 Тл [5]. Сварка таких конструкций без
применения специальных средств уменьшающих воздействие магнитных
полей, практически невозможна.
Во всех случаях для дальнейшего использования изделия требуется их
размагничивание поскольку повышенная остаточная намагниченность может
вызвать нарушение нормальных условий работы близкорасположенных
приборов, повышенный износ трущихся намагниченных деталей из-за
налипания на их поверхность ферромагнитных частиц, препятствовать
проведению последующих технологический операций, таких как сборка
деталей в узлы, сварка, механическая обработка. Необходимость
размагничивания особенно актуальна для изделий из легированных сталей,
характеризующихся высокими значениями остаточной магнитной индукции и
коэрцитивной силы.
Необходимость размагничивания изделий, создания устройств и
методов, позволяющих его осуществить, появилась еще в 40-е годы при
разработке оборудования для магнитной дефектоскопии [6].
Достаточно размагниченными считались изделия, магнитное состояние
которых не приводило к нежелательным последствиям: искажению в работе
оборудования и приборов, интенсивному прилипанию опилок и т.д. В
большинстве случаев такие последствия не наблюдались при размагничивании
до (0,5…1,0)∙10−2 Тл.
В связи с развитием и широким внедрением электроннолучевой сварки,
повышением требований к качеству соединений потребовалось
размагничивание изделий до (1…5)∙10−4 Тл [3].
Новые высокопрочные конструкционные стали, выпуск которых
непрерывно растет, по магнитным свойствам следует отнести к магнитно –
жестким, коэрцитивная сила которых ≥8∙103 A/м. Повышенная
энерговооруженность производства с использованием различных
электротехнических устройств увеличивает вероятность неконтролируемого
трудно устранимого намагничивания заготовок из таких сталей при операциях
плазменной резки, механической обработки, наложения прихваток,
транспортировки и в условиях хранения на складах.
Существующие методы и средства промышленного размагничивания не
ориентированы на нужды конвейерного размагничивания изделий, что
приводит к их непригодности к встраиванию в транспортные рольганги
технологических потоков дефектоскопов. Основным критерием в этом случае
является низкая производительность демагнетизаторов. При скорости
вихретоковых дефектоскопов 2 – 6 м/c промышленные устройства
размагничивания имеют скорость не выше 1,5 м/c.
В данной работе будет представлен метод высокопроизводительного
размагничивания длинномерных цилиндрических изделий, показаны его
технологические возможности, преимущества и недостатки.
1 Размагничивание. Способы размагничивания ферромагнитных
изделий

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Оксана М. Восточноукраинский национальный университет, студент 4 - ...
    4.9 (37 отзывов)
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политоло... Читать все
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политологии.
    #Кандидатские #Магистерские
    68 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Евгений А. доктор, профессор
    5 (154 отзыва)
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - ... Читать все
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - по социальной работе.
    #Кандидатские #Магистерские
    260 Выполненных работ
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Анна С. СФ ПГУ им. М.В. Ломоносова 2004, филологический, преподав...
    4.8 (9 отзывов)
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания... Читать все
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания и проверки (в качестве преподавателя) контрольных и курсовых работ.
    #Кандидатские #Магистерские
    16 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа

    Другие учебные работы по предмету

    Разработка системы контроля параметров газоподачи в процессе добычи нефтепродуктов
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Магнитный контроль параметров ферромагнитных объектов методом высших гармоник
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка СВЧ плазмотрона для конверсии природного газа
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка проекта лаборатории технической томографии
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Дифракционный метод контроля диаметра протяженных изделий
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Моментный двигатель с ленточной намоткой
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка системы цифровой радиографии проводов для воздушных линий электропередач
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)