Исследование возможности применения сингулярного разложения матриц яркостей для классификации цифровых изображений на спектрозональных и гиперспектральных снимках

Кохановский Виталий Алексеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В данной работе исследован метод распознавания однородных областей на данных дистанционного зондирования Земли, основанный на сингулярном разложении значений матриц яркостей, и разработан алгоритм классификации изображений. Исследование применения алгоритма представлено экспериментом, в ходе которого были классифицированы многозональные и гиперспектральные космические снимки и проведен анализ результатов.

Современное состояние дистанционного зондирования Земли обуславливается использованием технических систем анализа и обработки информации. Цифровые данные, обрабатываемые в целях получения тематической информации в большинстве случаев представлены изображениями. С каждым годом возрастающий объем информации стимулирует развитие быстродействующих вычислительных ресурсов, способных выполнять анализ изображений, используя комбинированные алгоритмы и методики, обеспечивающие высококачественный уровень анализа при имеющихся ограничениях.
При анализе изображения встает задача определения характеристик, по которым возможно разделение изображения на однородные области. В дальнейшей обработке определенные области используются для классификации. Классификация представляет собой процесс установления соответствия между областями на изображении и реальными объектами. Соответствие определяется по критериям схожести. На данный момент существует множество алгоритмов, учитывающих не только яркостные характеристики объектов, но текстурные и иные признаки (Форсайт, 2008).
Основываясь на приведенных соображениях, при создании методики классификации изображения можно выделить следующие основные этапы:
Разделение изображения на однородные области,
Вычисление признаков для каждой однородной области
Классификация однородных областей по вычисленным признакам.
При разработке алгоритма классификации возникает ряд проблем, связанных с особенностями интерпретации данных и учетом характеристик объектов:
Процедура сегментации изображения выполняется с большей точностью, при учете априорной информации в исследуемой предметной области, что требует экспертных знаний, а также настройки параметров, обеспечивающих качество выделения однородных областей.
При использовании искусственных нейронных сетей (ИНС) для задач классификации изображений возникает задача точной настройки алгоритма, учитывающего пространство признаков, что является необходимым критерием при анализе большого объема данных в процессе обучения нейронной сети.
Зачастую, неоднозначное представление данных нейронной сетью, вынуждает использовать более простые методы классификации.
Простые методы классификации могут быть представлены обучаемыми или необучаемыми моделями, в большинстве случаев обучаемые модели подразумевают установление регионов, вычисленные признаки которых будут использоваться как эталонные, при идентификации объектов на изображениях.
Актуальность данной работы обуславливается низкой точностью существующих простых методов классификации, и отсутствием учета непрямых спектральных признаков в окрестности каждого элемента изображения.
Целью работы является исследование алгоритма, основанного на сингулярном разложении матриц яркостей для задач анализа цифровых изображений космических съемочных систем.
Для достижения поставленной цели исследования необходимо решить следующие задачи:
Изучение существующих методов сегментации и классификации данных дистанционного зондирования Земли с целью анализа современного состояния предметной области для формирования требований к исследуемому алгоритму.
Отбор параметров, используемых в качестве признаков объектов
Разработка алгоритма классификации на основе сингулярного разложения матриц.
Проведение эксперимента и анализ результатов:
Подбор данных для обработки
Предварительная обработка данных
Классификация изображений разработанным методом
Анализ результатов сегментации
Научная новизна работы заключается в использовании алгоритма сингулярного разложения матриц яркостей для задач объектно-ориентированной классификации объектов на спектрозональных и гиперспектральных снимках.
Данный алгоритм подразумевает использование в качестве признаков объектов не прямые спектральные характеристики пикселей, а сингулярные значения областей изображения, учитывающие параметры яркости в исследуемой окрестности.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    AleksandrAvdiev Южный федеральный университет, 2010, преподаватель, канд...
    4.1 (20 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    28 Выполненных работ
    Оксана М. Восточноукраинский национальный университет, студент 4 - ...
    4.9 (37 отзывов)
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политоло... Читать все
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политологии.
    #Кандидатские #Магистерские
    68 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Татьяна П.
    4.2 (6 отзывов)
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки ... Читать все
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки в одном из крупнейших университетов Германии.
    #Кандидатские #Магистерские
    9 Выполненных работ
    Екатерина С. кандидат наук, доцент
    4.6 (522 отзыва)
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    #Кандидатские #Магистерские
    1077 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа

    Другие учебные работы по предмету