Разработка системы локального трекинга в коллайдерных экспериментах с применением методов глубокого обучения

Никольская Анастасия Николаевна
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Трекинг частиц – фундаментальная часть анализа данных для экспериментов физики высоких энергий. Во многих экспериментах используются GEM-детекторы для регистрации треков частиц. Такие детекторы обладают хорошими характеристиками, но при этом из-за своей конструкции производят большое количество ложных хитов. Наиболее часто для выделения треков из получаемых данных используется фильтр Калмана, однако он требует сложной процедуры построения начальных отрезков треков-кандидатов и имеет экспоненциальную сложность по отношению к множественности события. В данной работе представлено решение для идентификации и реконструкции треков на основе глубокой нейронной сети TrackNETv2. Эта модель легковесная, эффективная и может быть обучена с помощью моделирования Монте-Карло. В статье используются данные, смоделированные для экспериментов BM@N и BESIII. Эксперименты с данными BESIII выявили ограничения исходной модели, поэтому в новой модели – TrackNETv3 -были добавлены дополнительные блоки. Была предложена новая схема обучения исходной модели и адаптирован алгоритм быстрого поиска в индексе хитов для продолжений трека-кандидата. Все модификации были оценены на смоделированных данных, а также рассмотрены их сильные стороны и ограничения для применения в задаче трекинга.

Введение…………………………………………………………………………………………… 4

Постановка задачи …………………………………………………………………………. 6

Глава 1. Трековые детекторы …………………………………………………………….. 8

1.1. Эксперимент BESIII…………………………………………………………… 12

1.2. Эксперимент BM@N мегапроекта NICA ………………………………… 14

Глава 2. Обзор литературы………………………………………………………………. 18

2.1. Метод конформного отображения ……………………………………… 19

2.2. Преобразование Хафа ………………………………………………………… 20

2.3. Метод прослеживания по дорожке …………………………………….. 20

2.4. Подгонка треков методом наименьших квадратов ……………… 21

2.5. Фильтр Калмана ………………………………………………………………… 23

2.6. Клеточный автомат для поиска трек-кандидатов ………………… 27

2.7. Нейронные сети Хопфилда ………………………………………………… 29

2.8. Эластичные нейронные сети………………………………………………. 31

2.9. Глубокие нейронные сети ………………………………………………….. 32

Глава 3. Разработка модели TrackNETv3 для локального трекинга …… 36

3.1. Применение TrackNETv2 к данным коллайдерных экспериментов
на примере BESIII …………………………………………………………………………………. 36

3.2. Разработка классификатора треков-кандидатов………………………. 37

3.2.1. Классификатор на основе внутренних признаков TrackNETv2
3.2.2. Классификатор на основе координат трека …………………….. 39

3.3. Процедура обучения ………………………………………………………………. 40

Глава 4. Разработка программного решения …………………………………….. 43
4.1. Используемые технологии. библиотека Ariadne ……………………… 43

4.2. Разработка модуля трансформаций ………………………………………… 45

4.3. Проектирование стадии подготовки данных …………………………… 48

4.4. Разработка стадии инференса…………………………………………………. 49

Глава 5. Подготовка данных ……………………………………………………………. 52

5.1. Подготовка данных для тестирования и тренировки ………………. 52

5.2. Подготовка данных для классификатора ………………………………… 54

Глава 6. Эксперименты и результаты ………………………………………………. 56

6.1. Оценка результатов трекинга …………………………………………………. 56

6.2. Сравнение результатов экспериментов …………………………………… 58

6.2.1. BESIII………………………………………………………………………………. 58

6.2.2. BM@N …………………………………………………………………………….. 61

6.3. Анализ результатов ……………………………………………………………….. 62

Заключение …………………………………………………………………………………….. 66

Список источников …………………………………………………………………………. 68

Приложение 1 Листинги трансформаций …………………………………………. 73

Приложение 2. Листинги подготовки данных ………………………………….. 89

Приложение 3. Листинги моделей …………………………………………………… 92

Приложение 5. Листинги инференса ……………………………………………….. 95

В современном мире всё чаще возникают исследовательские задачи,
требующие массивного использования экспериментальной и вычислительной
техники. Такие задачи производят огромные объемы данных, которые
необходимо правильно обрабатывать и интерпретировать. В результате,
работа с большим данными играет одну из ключевых ролей в современных
исследованиях, поэтому разработка быстрых и точных систем обработки
информации становится всё более актуальной. Так, существующие на
сегодняшний день эксперименты в области физики высоких энергий,
производят гигантские потоки информации, достигшие уже экзабайтного
уровня, и поэтому требуют специальных компьютерных и сетевых систем для
распределенного сбора, фильтрации и обработки данных [1].

В данной работе была решена задача трекинга частиц в экспериментах с
детекторами на основе ГЭУ на примере BESIII и BM@N. Особенность этих
экспериментов заключается в том, что детекторы в них регистрируют не
только пролетающие сквозь своё внутреннее пространство частицы, но и
большое количество вторичных частиц или попросту шума, называемых
фейками. В результате методы типа фильтра Калмана перестают
удовлетворять требованиям таких экспериментов по скорости.

В данной работе был развит нейросетевой подход для трекинга частиц.
Была предложена модификация модели TrackNETv2. Так, исследования
показали, что TrackNETv2 не может фильтровать ложные треки для
детекторов с небольшим количеством станций обнаружения, как, например, 3
в эксперименте BESIII. Всего один процент ложных треков отбрасывался, что
не удовлетворяло требованиям физиков по качеству трекинга. Эта модель
была изменена путем добавления части классификатора для фильтрации
фейковых треков-кандидатов, что расширило ее возможности обобщения.
Также была существенно переработана процедура обучения и тестирования
данной модели.

Разработанный подход был также адаптирован для эксперимента
BM@N, что привело к увеличению качества трекинга на данном эксперименте
и подтвердило целесообразность использования данного метода локального
трекинга не только в экспериментах с низкими энергиями взаимодействия, но
и в экспериментах с более высокими энергиями.

Для разработки системы локального трекинга использовалась и
дополнялась открытая библиотека для нейросетевого трекинга Ariadne. При
решении задач, описанных в данной работе, библиотека была дополнена
модулями для подготовки данных, их трансформации, режима инференса.
Кроме того, как базовая модель TrackNETv2, так и новая модель TrackNETv3
вошли в набор готовых моделей этой библиотеки, а методы подготовки
данных для экспериментов BM@N и BESIII также стали частью этой
библиотеки.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ
    Анна Н. Государственный университет управления 2021, Экономика и ...
    0 (13 отзывов)
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уни... Читать все
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уникальности с нуля. Все работы оформляю в соответствии с ГОСТ.
    #Кандидатские #Магистерские
    0 Выполненных работ
    Мария А. кандидат наук
    4.7 (18 отзывов)
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет... Читать все
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет, реклама, журналистика, педагогика, право)
    #Кандидатские #Магистерские
    39 Выполненных работ
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Евгений А. доктор, профессор
    5 (154 отзыва)
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - ... Читать все
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - по социальной работе.
    #Кандидатские #Магистерские
    260 Выполненных работ

    Другие учебные работы по предмету