Анализ динамических процессов с использованием методов сегментации спутниковых изображений высокого разрешения

Сальникова Мария Владимировна
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Рассматривается задача анализа динамических изменений количества зеленых насаждений на спутниковых снимках высокого пространственного разрешения. Рассмотрены основные подходы к анализу спутниковых изображений, а также рассмотрены основные методы сегментации и эффективность их применения к спутниковых изображениям. Предложен метод сегментации спутниковых изображений высокого разрешения для анализа динамических процессов, включающий в себя комбинацию различных методов сегментации, таких как метод сдвига среднего значения, метод кластеризации k-means, пороговый метод. Создан программный продукт, решающий задачу анализа динамических изменений количества зеленых насаждений на спутниковых изображениях. Приводятся результаты экспериментов на реальных изображениях, подтверждающие эффективность предложенного метода.

Введение …………………………………………………………………………………………………………………………3
Постановка задачи ………………………………………………………………………………………………………5
1. Обзор литературы …………………………………………………………………………………………………..9
1.1 Основные направления методов определения местности на
спутниковых изображениях ………………………………………………………………………………..9
1.1.1 Спектральный анализ…………………………………………………………………..9

1.1.2 Текстурные методы …………………………………………………………………… 10

1.1.3 Смешанная обработка ………………………………………………………………. 11

1.2 Общие методы сегментации изображений и их применение к
спутниковым изображениям …………………………………………………………………………… 13
1.2.1 Пороговые методы. Адаптивный порог ……………………………… 14

1.2.2 Метод водоразделов ………………………………………………………………….. 14

1.2.3 Выделение границ при помощи оператора Лапласа………. 15

1.2.4 Метод сдвига среднего значения ………………………………………….. 16

2. Выбор методов решения …………………………………………………………………………………… 18
2.1 Предобработка. Метод сдвига среднего значения …………………. 18
2.2 Кластеризация. Метод k-средних …………………………………………………. 20
2.3 Выделение зеленых насаждений. Пороговый метод …………….. 21
3. Создание системы анализа динамического изменения степени
озеленения местности ……………………………………………………………………………………………. 22
3.1 Реализация алгоритма ……………………………………………………………………… 23
3.2. Тестирование ……………………………………………………………………………………… 29
4. Заключение ……………………………………………………………………………………………………………. 33
Выводы ………………………………………………………………………………………………………………………… 34
Список литературы …………………………………………………………………………………………………. 35

На сегодняшний день спутниковые изображения используются в
различных сферах деятельности. С каждым годом растет число
запускаемых спутников, обеспечивающих поставку изображений
высокого пространственного разрешения [2]. С улучшением качества
снимков расширяются и возможности их использования. Однако,
большим препятствием к широкому использованию спутниковых
снимков является сложность, а порой и отсутствие специального
инструментария, подходящего для конкретной задачи. Кроме того, важно
уметь не только получать информацию с таких изображений, но и
заниматься последующим анализом и обработкой этих данных. Много
важной информации можно получить, например, наблюдая за
процессами, которые происходят со временем на определенной
местности. Таким образом, необходимо уметь анализировать
динамические процессы, происходящие на конкретной территории.
Данная проблема может затрагивать многие отрасли современной науки,
так как информация, получаемая со спутниковых изображений, также
велика и разнообразна.
К тому же особенно остро в последние несколько лет стоит
проблема экологии, а также проблема недостаточного озеленения в
больших городах. С ростом городов, промышленности, увеличением
уровня автомобилизации происходит масштабная вырубка деревьев в
городах и уничтожение других зеленых насаждений. Но необходимо
понимать, что все зеленые насаждения в такой среде выполняют не
только эстетическую функцию, но и играют огромную санитарно-
гигиеническую роль. Зеленые насаждения выполняют санитарно-
гигиенические функции, такие как пыле- и газопоглощение, химическая
и биологическая очистка городского воздуха, смягчение микроклимата,
снижение уровня шума и т.п. Они создают благоприятные условия для
кратковременного отдыха горожан, служат местами психологической и
эмоциональной разгрузки, играют важную роль в создании
архитектурно-художественного облика города, т.е. являются активным
градоформирующим фактором [4]. К тому же, зачастую особое внимание
уделяют конкретно вырубке лесов, тогда как в условиях большого города
уничтожение даже нескольких деревьев или «зеленой» зоны с травой и
кустарниками в совокупности может привести к ухудшению
экологической ситуации в городе.
Именно поэтому в качестве примера динамического процесса,
взятого для распознавания со спутниковых изображений высокого
разрешения, а также для дальнейшего анализа данного процесса было
выбрано изменение количества зеленых насаждений, т.е. озеленение
городов.

1. Gurudatta V., Anuja A. K-Means Clustering Algorithm with Color-
based Thresholding for Satellite Images // International Journal of Computer
Applications (0975 – 8887) Volume 105 – No. 11, pp 17-20, November 2014.
2. Пестунов И. А., Мельников П. В. Информативность систем
текстурных признаков для классификации спутниковых изображений с
высоким пространственным разрешением // Интерэкспо Гео-Сибирь.
2012. №4.
3. Санаев И. В. Роль зеленых насаждений в создании оптимальной
городской среды // Вестник МГУЛ – Лесной вестник. 2006. №6.
4. Санаева Т. С. Деградация травянистой растительности на
объектах озеленения города // Вестник МГУЛ – Лесной вестник. 2012.
№1 (84).
5. Пестунов И.А., Бериков В.Б., Синявский Ю.Н. Сегментация
многоспектральных изображений на основе ансамбля
непараметрических алгоритмов кластеризации // Вестник Сибирского
Государственного аэрокосмического университета им. академика
М.Ф. Решетнева. 2010. № 5(31). С. 56-64.
6. Cheng Y. Mean shift, mode seeking, and clustering // IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1995. Vol. 17.
No. 8. P. 790-799.
7. Официальный сайт проекта Google Earth.
URL:https://www.google.com/earth/.
9. The OpenCV Reference Manual , Release 2.4.13.7
10. Wang L. Semi-supervised classification for hyperspectral imagery
based on spatial-spectral label propagation // ISPRS Journal of
Photogrammetry and Remote Sensing. – 2014. -Vol. 97. – P. 123-137.
11. Luo R. Spectral-spatial classification of hyperspectral images with
semi-supervised graph learning // SPIE Remote Sensing. – International
Society for Optics and Photonics, 2016.
12. Yang L. Semi-supervised hyperspectral image classification using
spatio-spectral Laplacian support vector machine // IEEE Geoscience and
Remote Sensing Letters. – 2014. -Vol. 11. – N. 3. – P. 651-655.
13. Wang A., Wang S., Lucieer A. Segmentation of multispectral high-
resolution satellite imagery based on integrated feature distributions //
International Journal of Remote Sensing. -2010. – Vol. 31. – N. 6. – P. 1471-
1483.
14. Plaza A., Du Q., Biouoas-Dias J. Foreword to the special issue on
spectral unmixing of remotely sensed data // IEEE Transactions on
Geoscience and Remote Sensing. 2011. Vol. 49, No. 11. P. 4103-4110.
15. Потатуркин О. И., Борзов С. М., Потатуркин А. О., Узилов С. Б.
Методы и технологии обработки мульти-и гиперспектральных данных
дистанционногозондированияЗемливысокогоразрешения//
Вычислительные технологии, №18. 2013. C. 60-67.
16. Борзов С. М., Потатуркин А. О. Сегментация спутниковых
изображенийвысокогоразрешениясучетомихструктурных
особенностей // Интерэкспо Гео-Сибирь. 2013. №1.
17. Фраленко В. П. Методы текстурного анализа изображений,
обработка данных дистанционного зондирования Земли //
Программные системы: теория и приложения, №5. 2014. С. 19–39.
18. Мицель А. А., Колодникова Н. В., Протасов К. Т.
Непараметрический алгоритм текстурного анализа аэрокосмических
снимков // Изв. Томского политехнич. университета, 2005. Т. 308, № 1, С.
65–70.
19. Кутлунин П. Е.. Методы обработки изображений с импульсным
шумом на основе алгоритма кластеризации: дис. … канд. техн. наук. 2017.
20. Путятин Е.П., Панченко Д.С. Сравнительный анализ методов
сегментации изображений. // Радиоэлектроника и информатика.–
1999.– №4(9). – С. 109–114.
21. Luus F., Salmon B., Van Den Bergh F., Maharaj B. Multiview deep
learning for land-use classification // IEEE Geosci. Remote Sens. Lett., vol. 12,
no. 12, pp. 2448-2452, 2015.
22. Rußwurm M., Körner M. Multi-Temporal Land Cover Classification
with Sequential Recurrent Encoders // ISPRS Int. J. Geo-Inf. 2018, 7, 129.
23. Samal D.R., Gedam S.S. Monitoring land use changes associated with
urbanization: An object based image analysis approach // Eur. J. Remote Sens.
2015, 48, 85-99.
24. Mekhalf M. L., Melgani F., Bazi Y., Alajlan N. Land-use classification
with compressive sensing multifeature fusion // IEEE Geosci. Remote Sens.
Lett., vol. 12, no. 10, pp. 2155-2159, 2015.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Анна С. СФ ПГУ им. М.В. Ломоносова 2004, филологический, преподав...
    4.8 (9 отзывов)
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания... Читать все
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания и проверки (в качестве преподавателя) контрольных и курсовых работ.
    #Кандидатские #Магистерские
    16 Выполненных работ
    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ

    Другие учебные работы по предмету