Регуляризующие алгоритмы на основе методов ньютоновского типа и нелинейных аналогов -процессов : диссертация на соискание ученой степени кандидата физико-математических наук : 01.01.07
Список сокращений и условных обозначений . . . . . . . . . . . . 4
Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Глава 1. Решение уравнений с монотонным оператором . . . . . 17
1.1. Основные определения и постановка задачи . . . . . . . . . . . . 18
1.2. Метод Ньютона . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3. Нелинейные аналоги альфа-процессов . . . . . . . . . . . . . . . . 29
1.4. Оценка погрешности двухэтапного метода . . . . . . . . . . . . . 35
1.5. Численные эксперименты . . . . . . . . . . . . . . . . . . . . . . . 37
Глава 2. Решение уравнений с немонотонным оператором . . . 42
2.1. Метод Ньютона . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2. Нелинейные аналоги альфа-процессов . . . . . . . . . . . . . . . . 45
2.3. Модифицированные варианты регуляризованных методов на ос
нове нелинейных аналогов альфа-процессов . . . . . . . . . . . . 50
2.4. Решение модельных задач гравиметрии и магнитометрии . . . . 57
Глава 3. Покомпонентные методы и вычислительная оптимиза
ция для решения обратных структурных задач гравиметрии и
магнитометрии . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1. Покомпонентный метод типа Ньютона и вычислительная опти
мизация метода Ньютона . . . . . . . . . . . . . . . . . . . . . . . 67
3.2. Покомпонентный метод типа Левенберга – Марквардта для ре
шения обратной задачи гравиметрии для модели многослойной
среды . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3. Использование параллельных вычислений . . . . . . . . . . . . . 76
3.4. Решение модельных задач гравиметрии и магнитометрии на мно
гопроцессорных системах . . . . . . . . . . . . . . . . . . . . . . . 80
3.5. Описание комплекса параллельных программ . . . . . . . . . . . 99
Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Публикации автора . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Список сокращений и условных обозначений
— гильбертово пространство;
( ) — множество неподвижных точек оператора ;
( ; ) — шар с центром в точке радиуса ;
R — множество вещественных чисел;
R — евклидово пространство -мерных векторов;
‖ ‖ — норма в гильбертовом пространстве;
⟨ , ⟩ — скалярное произведение в гильбертовом пространстве;
2 [ , ] — гильбертово пространство функций, интегрируемых с
квадратом на отрезке [ , ];
— Open Multi – Processing, технология параллельных вы
числений для многоядерных архитектур;
— Compute Unified Device Architecture, технология парал
лельных вычислений на графических ускорителях;
Актуальность темы исследования.
Теория некорректно поставленных задач и методы их решения относятся
к важнейшим направлениям исследования современной вычислительной мате
матики, что обусловлено потребностями различных областей естествознания,
техники и медицины, где эти проблемы возникают в форме обратных задач.
Решение практических задач требует обработки больших объемов данных.
Для уменьшения времени счета используются параллельные алгоритмы и мно
гопроцессорные вычислители.
Степень разработанности темы исследования. Ж. Адамар в 1902 г. [7]
впервые определил условия корректности задачи математической физики. За
дачи, не отвечающие этим условиям, то есть некорректные, Ж. Адамар считал
лишенными физического смысла. В течение многих лет обратные задачи реша
лись методами без строгого математического обоснования.
Первой работой по теории некорректных задач является работа академика
А.Н. Тихонова 1943 г. [110], в которой он доказал устойчивость некоторых об
ратных задач при условии принадлежности решения компактному множеству.
Также в этой работе он решил одну из актуальных обратных задач разведочной
геофизики. В дальнейшем теория некорректных задач оформилась в самостоя
тельный раздел современной математики. В конце 50-х годов и начале 60-х го
дов появились работы, посвященные решению некоторых некорректных задач
с помощью идей регуляризации, выдающихся отечественных ученых: А.Н. Ти
хонова, М.М. Лаврентьева, В.К. Иванова. Их исследования в этой области по
служили созданию трех научных школ: московской, сибирской и уральской.
Началось исследование устойчивых методов решения некорректно поставлен
ных задач, представляющих собой актуальную проблему.
В большом цикле работ, выполненных начиная с 1963 г., А.Н. Тихонов
сформулировал принцип устойчивого решения некорректно поставленных за
дач, ввел понятие регуляризирующего оператора и предложил ряд эффектив
ных методов построения таких операторов, легко реализуемых на ЭВМ [111—
114]. Метод регуляризации А.Н. Тихонова был применен для решения большо
го количества фундаментальных математических и актуальных прикладных
задач. Тихоновским методом регуляризации были решены операторные уравне
ния первого рода, обратные задачи теории потенциала и теплопроводности.
М.М. Лаврентьеву принадлежит идея замены исходного уравнения близ
ким ему в некотором смысле уравнением, для которого задача нахождения ре
шения устойчива к малым изменениям правой части и разрешима для любой
правой части [76]. Он доказал теоремы сходимости регуляризованного решения
к точному [74]. Основополагающие результаты для интегральных уравнений
Фредгольма первого рода получены в работах [75; 77—79], где для решения
линейных интегральных уравнений Фредгольма первого рода построены регу
ляризирующие операторы по М.М. Лаврентьеву.
В работах В.К. Иванова, выполненных в 1960–1970-е годы, введено понятие
квазирешения [66; 67], заложены основы двусторонних оценок регуляризующих
алгоритмов [68], установлены связи между вариационными методами регуля
ризации, развит единый подход к трактовке линейных некорректных задач в
топологических пространствах [69].
Отметим, что не все некорректные задачи возможно регуляризовать. Рос
сийский математик Л.Д. Менихес [86] привел пример интегрального операто
ра с непрерывным замкнутым ядром, действующего из пространства [0, 1] в
2 [0, 1], обратная задача для которого нерегуляризуема. Проблемам регуляри
зуемости посвящены работы Ю.И. Петунина и А.Н. Пличко [92].
Систематическое изучение регулярных методов решения некорректных за
дач началось с работ А.Б. Бакушинского, где сформулирован принцип итера
тивной регуляризации итерационных процессов, в которых исходная задача ре
гуляризуется параметром , меняющимся на каждом шаге итерации по опреде
ленному правилу. А.Б. Бакушинский, Б.Т. Поляк сформулировали общие прин
ципы построения регуляризующих алгоритмов в банаховых пространствах [49].
Метод обобщенной невязки был предложен А.В. Гончарским, А.С. Леоновым,
А.Г. Яголой [58]. Монография А.Б. Бакушинского, А.В. Гончарского [48] по
священа итеративной регуляризации вариационных неравенств с монотонны
ми операторами, которые единообразно описывают многие постановки задач
с априорной информацией. В работах [46; 47] А.Б. Бакушинский предложил
итеративную регуляризацию методов Ньютона – Канторовича и Гаусса – Нью
тона и исследовал их сходимость. Различные обобщения результатов А.Б. Ба
кушинского по методу Гаусса – Ньютона были получены в работах B. Blaschke,
A. Neubauer, O. Scherzer, B. Kaltenbacher, A.G.Ramm [4; 14]. Исследования мето
дов наискорейшего спуска и минимальной ошибки решения нелинейных некор
ректных задач проведены A. Neubauer, O. Scherzer в работах [21; 22; 27],
Для построения регуляризующих алгоритмов при решении прикладных
задач требуется использовать дополнительную информацию о свойствах иско
мого решения, заданную в виде равенств и неравенств, вытекающих из физиче
ской сущности задачи. В своей монографии [87] В.А. Морозов, А.И. Гребенни
ков обобщили опыт решения многих прикладных некорректных задач с учетом
дополнительной информации. Получило развитие построение регуляризующих
алгоритмов вариационными методами.
Регуляризующие алгоритмы, предназначенные для решения плохо обуслов
ленных систем линейных уравнений, интегральных уравнений Фредгольма при
водятся в монографии А.Н. Тихонова, А.С. Леонова и А.Г. Яголы [115]. В при
ложениях А.Г. Ягола рассмотрел различные обратные задачи колебательной
спектроскопии, оптики [19; 24; 45; 90].
Методам решения операторных уравнений первого рода посвящены рабо
ты В.П. Тананы [104—106]. Он предложил метод -регуляризации, представля
ющий собой разновидность метода Тихонова, расширивший класс регуляризуе
мых задач [107; 108], доказана сходимость решения -регуляризованной вариа
ционной задачи к решению исходного операторного уравнения [108].
Регуляризующие алгоритмы в пространствах функций ограниченной вари
ации были впервые предложены М.Г. Дмитриевым, В.С. Полещуком [60], И.Ф.
Дорофеевым [61]. В работах А.В. Гончарского и В.В. Степанова [59], А.Л. Аге
ева [36] доказана равномерная сходимость приближенных решений. Подход, из
ложенный в [120], основан на идее двухэтапного алгоритма: построении прибли
женного решения исходного операторного уравнения из условия минимизации
регуляризованной невязки на априорном множестве, где привлекается инфор
мация о неотрицательности, монотонности и выпуклости решения. На втором
этапе для решения корректно поставленной экстремальной задачи применяются
методы градиентного типа, линеаризованные методы и алгоритмы, специально
ориентированные на определенный класс априорных ограничений.
Для решения систем нелинейных уравнений в условиях регулярности пред
ложены методы в работах Л.В. Канторовича [71], Б.Т. Поляка [93], J. M. Ortega
и W. C. Rheinboldt [25], M.J.D. Powell [26], J.E.Dennis, R.B. Schnabel, P.D. Frank
[5], C.T. Kelley [15], R.B. Schnabel и P.D. Frank [29] для решения систем урав
нений с сингулярной или плохо обусловленной матрицей Якоби, J.C. Gilbert,
J. Nocedal, S.J. Wright [6; 23]. Термин « -процессы», характеризующий класс
нелинейных итерационных методов (где оператор шага нелинеен) для решения
линейного уравнения с ограниченным самосопряженным положительно полу
определенным оператором, был введен в монографии М.А. Красносельского,
Г.М. Вайникко, П.П. Забрейко [72]. Нелинейные модифицированные аналоги
Приведем основные результаты диссертационной работы.
1. Для нелинейного уравнения с монотонным оператором дано обоснование
двухэтапного метода на основе регуляризованного метода Ньютона. Построены
регуляризованные градиентные методы для решения нелинейного уравнения
с монотонным оператором: метод минимальной ошибки, метод наискорейшего
спуска, метод минимальных невязок. Доказаны теоремы сходимости и сильная
фейеровость итерационных процессов при аппроксимации регуляризованного
решения. Для задачи с немонотонным оператором и неотрицательным спек
тром его производной обоснована сходимость метода Ньютона и нелинейных
-процессов с модифицированными вариантами к регуляризованному решению.
2. Для решения нелинейных интегральных уравнений обратных задач гра
виметрии предложены экономичные покомпонентные методы типа Ньютона и
типа Левенберга – Марквардта. Предложена вычислительная оптимизация ме
тода Ньютона для задач, где матрица производной имеет диагональное преоб
ладание.
3. Разработан комплекс параллельных программ для многоядерных и гра
фических процессоров (видеокарт) решения обратных задач гравиметрии и маг
нитометрии на сетках большой размерности методами ньютоновского типа и
покомпонентными методами.
В дальнейшей научной работе автора предполагается исследование на схо
димость покомпонентных методов типа Ньютона и Левенберга – Марквардта.
1. Akimova E. N., Misilov V. E., Tretyakov A. I. Optimized Algorithms
for Solving Structural Inverse Gravimetry and Magnetometry Problems
on GPUs // Communications in Computer and Information Science. Vol.
753. — 2017. — Pp. 144–155.
Помогаем с подготовкой сопроводительных документов
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!