Регуляризующие алгоритмы на основе методов ньютоновского типа и нелинейных аналогов -процессов : диссертация на соискание ученой степени кандидата физико-математических наук : 01.01.07

📅 2018 год
Скурыдина, А. Ф.
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Список сокращений и условных обозначений . . . . . . . . . . . . 4

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Глава 1. Решение уравнений с монотонным оператором . . . . . 17
1.1. Основные определения и постановка задачи . . . . . . . . . . . . 18
1.2. Метод Ньютона . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3. Нелинейные аналоги альфа-процессов . . . . . . . . . . . . . . . . 29
1.4. Оценка погрешности двухэтапного метода . . . . . . . . . . . . . 35
1.5. Численные эксперименты . . . . . . . . . . . . . . . . . . . . . . . 37

Глава 2. Решение уравнений с немонотонным оператором . . . 42
2.1. Метод Ньютона . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2. Нелинейные аналоги альфа-процессов . . . . . . . . . . . . . . . . 45
2.3. Модифицированные варианты регуляризованных методов на ос­
нове нелинейных аналогов альфа-процессов . . . . . . . . . . . . 50
2.4. Решение модельных задач гравиметрии и магнитометрии . . . . 57

Глава 3. Покомпонентные методы и вычислительная оптимиза­
ция для решения обратных структурных задач гравиметрии и
магнитометрии . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1. Покомпонентный метод типа Ньютона и вычислительная опти­
мизация метода Ньютона . . . . . . . . . . . . . . . . . . . . . . . 67
3.2. Покомпонентный метод типа Левенберга – Марквардта для ре­
шения обратной задачи гравиметрии для модели многослойной
среды . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3. Использование параллельных вычислений . . . . . . . . . . . . . 76
3.4. Решение модельных задач гравиметрии и магнитометрии на мно­
гопроцессорных системах . . . . . . . . . . . . . . . . . . . . . . . 80
3.5. Описание комплекса параллельных программ . . . . . . . . . . . 99

Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Публикации автора . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Список сокращений и условных обозначений

— гильбертово пространство;
( ) — множество неподвижных точек оператора ;
( ; ) — шар с центром в точке радиуса ;
R — множество вещественных чисел;
R — евклидово пространство -мерных векторов;
‖ ‖ — норма в гильбертовом пространстве;
⟨ , ⟩ — скалярное произведение в гильбертовом пространстве;
2 [ , ] — гильбертово пространство функций, интегрируемых с
квадратом на отрезке [ , ];
— Open Multi – Processing, технология параллельных вы­
числений для многоядерных архитектур;
— Compute Unified Device Architecture, технология парал­
лельных вычислений на графических ускорителях;

Актуальность темы исследования.
Теория некорректно поставленных задач и методы их решения относятся
к важнейшим направлениям исследования современной вычислительной мате­
матики, что обусловлено потребностями различных областей естествознания,
техники и медицины, где эти проблемы возникают в форме обратных задач.
Решение практических задач требует обработки больших объемов данных.
Для уменьшения времени счета используются параллельные алгоритмы и мно­
гопроцессорные вычислители.
Степень разработанности темы исследования. Ж. Адамар в 1902 г. [7]
впервые определил условия корректности задачи математической физики. За­
дачи, не отвечающие этим условиям, то есть некорректные, Ж. Адамар считал
лишенными физического смысла. В течение многих лет обратные задачи реша­
лись методами без строгого математического обоснования.
Первой работой по теории некорректных задач является работа академика
А.Н. Тихонова 1943 г. [110], в которой он доказал устойчивость некоторых об­
ратных задач при условии принадлежности решения компактному множеству.
Также в этой работе он решил одну из актуальных обратных задач разведочной
геофизики. В дальнейшем теория некорректных задач оформилась в самостоя­
тельный раздел современной математики. В конце 50-х годов и начале 60-х го­
дов появились работы, посвященные решению некоторых некорректных задач
с помощью идей регуляризации, выдающихся отечественных ученых: А.Н. Ти­
хонова, М.М. Лаврентьева, В.К. Иванова. Их исследования в этой области по­
служили созданию трех научных школ: московской, сибирской и уральской.
Началось исследование устойчивых методов решения некорректно поставлен­
ных задач, представляющих собой актуальную проблему.
В большом цикле работ, выполненных начиная с 1963 г., А.Н. Тихонов
сформулировал принцип устойчивого решения некорректно поставленных за­
дач, ввел понятие регуляризирующего оператора и предложил ряд эффектив­
ных методов построения таких операторов, легко реализуемых на ЭВМ [111—
114]. Метод регуляризации А.Н. Тихонова был применен для решения большо­
го количества фундаментальных математических и актуальных прикладных
задач. Тихоновским методом регуляризации были решены операторные уравне­
ния первого рода, обратные задачи теории потенциала и теплопроводности.
М.М. Лаврентьеву принадлежит идея замены исходного уравнения близ­
ким ему в некотором смысле уравнением, для которого задача нахождения ре­
шения устойчива к малым изменениям правой части и разрешима для любой
правой части [76]. Он доказал теоремы сходимости регуляризованного решения
к точному [74]. Основополагающие результаты для интегральных уравнений
Фредгольма первого рода получены в работах [75; 77—79], где для решения
линейных интегральных уравнений Фредгольма первого рода построены регу­
ляризирующие операторы по М.М. Лаврентьеву.
В работах В.К. Иванова, выполненных в 1960–1970-е годы, введено понятие
квазирешения [66; 67], заложены основы двусторонних оценок регуляризующих
алгоритмов [68], установлены связи между вариационными методами регуля­
ризации, развит единый подход к трактовке линейных некорректных задач в
топологических пространствах [69].
Отметим, что не все некорректные задачи возможно регуляризовать. Рос­
сийский математик Л.Д. Менихес [86] привел пример интегрального операто­
ра с непрерывным замкнутым ядром, действующего из пространства [0, 1] в
2 [0, 1], обратная задача для которого нерегуляризуема. Проблемам регуляри­
зуемости посвящены работы Ю.И. Петунина и А.Н. Пличко [92].
Систематическое изучение регулярных методов решения некорректных за­
дач началось с работ А.Б. Бакушинского, где сформулирован принцип итера­
тивной регуляризации итерационных процессов, в которых исходная задача ре­
гуляризуется параметром , меняющимся на каждом шаге итерации по опреде­
ленному правилу. А.Б. Бакушинский, Б.Т. Поляк сформулировали общие прин­
ципы построения регуляризующих алгоритмов в банаховых пространствах [49].
Метод обобщенной невязки был предложен А.В. Гончарским, А.С. Леоновым,
А.Г. Яголой [58]. Монография А.Б. Бакушинского, А.В. Гончарского [48] по­
священа итеративной регуляризации вариационных неравенств с монотонны­
ми операторами, которые единообразно описывают многие постановки задач
с априорной информацией. В работах [46; 47] А.Б. Бакушинский предложил
итеративную регуляризацию методов Ньютона – Канторовича и Гаусса – Нью­
тона и исследовал их сходимость. Различные обобщения результатов А.Б. Ба­
кушинского по методу Гаусса – Ньютона были получены в работах B. Blaschke,
A. Neubauer, O. Scherzer, B. Kaltenbacher, A.G.Ramm [4; 14]. Исследования мето­
дов наискорейшего спуска и минимальной ошибки решения нелинейных некор­
ректных задач проведены A. Neubauer, O. Scherzer в работах [21; 22; 27],
Для построения регуляризующих алгоритмов при решении прикладных
задач требуется использовать дополнительную информацию о свойствах иско­
мого решения, заданную в виде равенств и неравенств, вытекающих из физиче­
ской сущности задачи. В своей монографии [87] В.А. Морозов, А.И. Гребенни­
ков обобщили опыт решения многих прикладных некорректных задач с учетом
дополнительной информации. Получило развитие построение регуляризующих
алгоритмов вариационными методами.
Регуляризующие алгоритмы, предназначенные для решения плохо обуслов­
ленных систем линейных уравнений, интегральных уравнений Фредгольма при­
водятся в монографии А.Н. Тихонова, А.С. Леонова и А.Г. Яголы [115]. В при­
ложениях А.Г. Ягола рассмотрел различные обратные задачи колебательной
спектроскопии, оптики [19; 24; 45; 90].
Методам решения операторных уравнений первого рода посвящены рабо­
ты В.П. Тананы [104—106]. Он предложил метод -регуляризации, представля­
ющий собой разновидность метода Тихонова, расширивший класс регуляризуе­
мых задач [107; 108], доказана сходимость решения -регуляризованной вариа­
ционной задачи к решению исходного операторного уравнения [108].
Регуляризующие алгоритмы в пространствах функций ограниченной вари­
ации были впервые предложены М.Г. Дмитриевым, В.С. Полещуком [60], И.Ф.
Дорофеевым [61]. В работах А.В. Гончарского и В.В. Степанова [59], А.Л. Аге­
ева [36] доказана равномерная сходимость приближенных решений. Подход, из­
ложенный в [120], основан на идее двухэтапного алгоритма: построении прибли­
женного решения исходного операторного уравнения из условия минимизации
регуляризованной невязки на априорном множестве, где привлекается инфор­
мация о неотрицательности, монотонности и выпуклости решения. На втором
этапе для решения корректно поставленной экстремальной задачи применяются
методы градиентного типа, линеаризованные методы и алгоритмы, специально
ориентированные на определенный класс априорных ограничений.
Для решения систем нелинейных уравнений в условиях регулярности пред­
ложены методы в работах Л.В. Канторовича [71], Б.Т. Поляка [93], J. M. Ortega
и W. C. Rheinboldt [25], M.J.D. Powell [26], J.E.Dennis, R.B. Schnabel, P.D. Frank
[5], C.T. Kelley [15], R.B. Schnabel и P.D. Frank [29] для решения систем урав­
нений с сингулярной или плохо обусловленной матрицей Якоби, J.C. Gilbert,
J. Nocedal, S.J. Wright [6; 23]. Термин « -процессы», характеризующий класс
нелинейных итерационных методов (где оператор шага нелинеен) для решения
линейного уравнения с ограниченным самосопряженным положительно полу­
определенным оператором, был введен в монографии М.А. Красносельского,
Г.М. Вайникко, П.П. Забрейко [72]. Нелинейные модифицированные аналоги

Приведем основные результаты диссертационной работы.
1. Для нелинейного уравнения с монотонным оператором дано обоснование
двухэтапного метода на основе регуляризованного метода Ньютона. Построены
регуляризованные градиентные методы для решения нелинейного уравнения
с монотонным оператором: метод минимальной ошибки, метод наискорейшего
спуска, метод минимальных невязок. Доказаны теоремы сходимости и сильная
фейеровость итерационных процессов при аппроксимации регуляризованного
решения. Для задачи с немонотонным оператором и неотрицательным спек­
тром его производной обоснована сходимость метода Ньютона и нелинейных
-процессов с модифицированными вариантами к регуляризованному решению.
2. Для решения нелинейных интегральных уравнений обратных задач гра­
виметрии предложены экономичные покомпонентные методы типа Ньютона и
типа Левенберга – Марквардта. Предложена вычислительная оптимизация ме­
тода Ньютона для задач, где матрица производной имеет диагональное преоб­
ладание.
3. Разработан комплекс параллельных программ для многоядерных и гра­
фических процессоров (видеокарт) решения обратных задач гравиметрии и маг­
нитометрии на сетках большой размерности методами ньютоновского типа и
покомпонентными методами.
В дальнейшей научной работе автора предполагается исследование на схо­
димость покомпонентных методов типа Ньютона и Левенберга – Марквардта.

1. Akimova E. N., Misilov V. E., Tretyakov A. I. Optimized Algorithms
for Solving Structural Inverse Gravimetry and Magnetometry Problems
on GPUs // Communications in Computer and Information Science. Vol.
753. — 2017. — Pp. 144–155.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Вики Р.
    5 (44 отзыва)
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написан... Читать все
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написание письменных работ для меня в удовольствие.Всегда качественно.
    #Кандидатские #Магистерские
    60 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ