Элементный состав солевых образований из природных пресных вод как индикатор экологической безопасности водопользования
Список сокращений 4
Введение 5
Глава 1. Солеобразование при многократном кипячении воды 16
Глава 2. Краткая физико-географическая, геологическая,
гидрологическая, экологическая характеристика Павлодарской области 22
2.1 Ландшафтные особенности 25
2.2 Геологическая характеристика 27
2.3 Гидрогеологическая изученность территории 29
2.4 Геоэкологическая обстановка на территории 36
Глава 3. Материалы и методы исследования 41
3.1 Методика отбора проб 41
3.2 Экспериментальные данные 44
3.3 Методы лабораторных испытаний и анализа проб 47
3.4 Методика обработки данных 53
Глава 4. Оценка качества вод по данным изучения состава солевых
образований из природных пресных вод в населенных пунктах
Павлодарской области 55
4.1 Взаимосвязь состава накипи с гидрогеохимическими
особенностями воды 55
4.2 Содержание урана в питьевых водах 59
Глава 5. Элементный состав солевых отложений природных пресных вод
в населенных пунктах Павлодарской области 71
5.1 Общая геохимическая характеристика солевых отложений из
природных пресных вод 71
5.2 Пространственное распределение химических элементов в
солевых отложениях из природных пресных вод и районирование
территории по суммарному показателю накопления компонентов 93
Глава 6. Взаимосвязь химического состава солевых образований из
природных пресных вод и уровня заболеваемости населения
Павлодарской области 109
6.1 Анализ взаимосвязи химического состава накипи с
заболеваемостью взрослого населения 126
6.2 Анализ взаимосвязи химического состава накипи с
заболеваемостью детского населения 130
Заключение 134
Список литературы 136
СПИСОК СОКРАЩЕНИЙ
ВАК – Высшая аттестационная комиссия
Г.а. – городской акимат
Гг. – годы
ГИГЭ – Кафедра гидрогеологии, инженерной геологии и гидрогеоэкологии
ГЭГХ – Кафедра геоэкологии и геохимии
ИНАА – Инструментальный нейтронно-активационный анализ
ККСОН – Комитет по контролю в сфере образования и науки
МКБ – Международная классификация болезней
МОН – Министерство образования и науки
СЭМ – Сканирующая электронная микроскопия
ICP-MS – Масс спектрометрия с индуктивно связанной плазмой
Актуальность исследования. Вода одно из важных химических
соединений, распространенных повсеместно, которое играет особую роль во всех
природных процессах, в том числе происходящих в живом организме
(Вернадский, 1933). Поскольку эта субстанция является поставщиком многих
элементов, качество ее химического состава вызывает определенную
обеспокоенность среди населения. Человек всегда должен быть уверен в
экологической безопасности используемых водных ресурсов. Под «экологической
безопасностью водопользования» понимается комплекс состояний отношений
между населением, экосистемами, хозяйством и водными объектами, при котором
выполняется ряд определенных требований (Алексеевский и др, 2011; Романова и
др., 2011; Попов В.К. и др., 2002). Одно из которых, заключается в потребности
населения воде в необходимом объеме и с приемлемым качеством. Основой для
осуществления эффективной экологической безопасности водопользования
является Водный кодекс и Водная стратегия в Российской Федерации и
Концепция экологической безопасности Республики Казахстан.
Химический состав вод находится в рамках определенных закономерностей,
подчиненных геологическому строению, тектонике, истории геологического
развития планеты и отдельных геологических структур, рельефу, климату,
гидрологическому режиму регионов (Кирюхин и др., 1993; Основы
гидрогеологии…,1982 и др.) и антропогенному воздействию (Орлов, 1988; Зекцер,
2011; Романовская, 2005 и др.).
Употребление недоброкачественной питьевой воды ведет к ухудшению
состояния здоровья человека (Боев и др. 1995, 1998; Большаков и др. 1999; Брукс,
1982; Давыдов, 1998; Маймулов и др. 1998; Рослый и др. 2000; Сидоренко,
Кутепов, 1994 и др.). И, как следствие, приводит к снижению естественной
сопротивляемости организма, а также ранними неблагоприятными
функциональными изменениями в различных физиологических системах
(Кабалова и др., 1995; Демин, 2000; Петин и др., 2006; Гусева и др., 2000;
Муравьев, 2000 и др.).
При использовании воды в бытовых условиях и для питья, она подвергается
неоднократному кипячению, при котором в результате происходящих сложных
электрохимических процессов, кристаллизации, зависящей от комплекса
факторов, приводит к накипеобразованию (Шаов и др., 2005). Прежде всего, этот
процесс связан с распадом бикарбонатов кальция и магния при нагреве воды,
которые превращаются в малорастворимые образования, т.е. когда растворимость
таких веществ падает с увеличением температуры (карбонаты кальция, магния,
железа, гидрооксид магния, оксид магния). В условиях, когда карбонатная
жесткость, превышает определенные уровни в воде, то она склонна к
накипеобразованию.
Существует много исследований, касающихся разработки способов
избавления от накипи в промышленных и хозяйственно-бытовых условиях,
(Gromoglasov, 1990; Присяжнюк, 2003; Дорошенко, 2005; Высоцкий, 2013),
изучения механизма кинетики и кристаллизации (Klepetsanis, 1999; Линников,
2012), однако есть и те, которые затрагивают применение данного объекта в
контексте работ эколого-геохимического и прогнозно-металлогенического
характера (Эколого-геохимические …, 2006; Язиков и др., 2002, 2004, 2007;
Tapkhaeva et al., 2010; Монголина и др., 2011; Робертус и др, 2014; Соктоев и др.,
2011, 2014). По раннее проведенным исследованиям известно, что накипь несет
важную геохимическую информацию, которая отражает не только специфику
ландшафтно-геохимических и геолого-металлогенических особенностей
территории, но и взаимосвязь между уровнем заболеваемости населения и
содержанием химических элементов в накипи. Накипь как объект изучения
вызывает множества вопросов, затрагивающие процессы от самого механизма ее
образования до методических подходов к интерпретации полученных
результатов. Необходимы дополнительные исследования, касающейся
использования его как вещества при определении качества воды и влияния на
здоровье человека, что обуславливает актуальность данной работы.
Цель работы: изучить элементный состав солевых отложений из
природных пресных вод (накипи) для определения медико-экологической
безопасности водных ресурсов, используемых в хозяйственно-питьевых целях на
Проведенные исследования позволяют сделать следующие выводы:
1. Солевые отложения природных пресных вод на территории области
позволили выявить общерегиональную специфику в виде 3 элементов: урана,
серебра, тантала. Каждый район Павлодарской области отличается
определенным набором химических элементов, содержащихся в накипи, что
объясняется влиянием факторов природного и техногенного происхождения.
2. Установлена зависимость содержания урана в воде и накипи. При
содержании в воде урана 17,7 мкг/л его средняя концентрация в накипи
колеблется в пределах 30-40 мг/кг. Это может быть тем лимитирующим
уровнем содержания в накипи, при котором его концентрация в воде
превышает нормативные требования, установленные в России и США.
3. Районы по аномальному накоплению элементов в накипи могут быть
представлены следующим рядом в убывающей последовательности:
Иртышский, Качирский, г.а. Павлодара, Аксу, Железинский, Успенский,
Актогайский, г.а. Экибастуза, Баянаульский, Лебяженский, Майский,
Щарбактинский.
4. Солевые отложения из природных пресных вод (накипь) Иртышского
района выделяется максимальным содержанием редкоземельных элементов и
тория. Этот же район занимает первое место по частоте встречаемости таких
нозологических форм заболеваний, как систем костно-мышечной и
соединительной ткани, пищеварительной, кровообращения, новообразований,
врожденных аномалий, деформаций, хромосомных нарушений у взрослого
населения.
Высокое содержание хрома в накипи способствует росту числа
заболеваний систем кровообращения и костно-мышечной и соединительной
ткани детей.
5. Выявленные связи с уровнем заболеваемости населения позволит
спрогнозировать места распространения специфичных заболеваний
определенных физиологических систем в зависимости от химического состава
вод и сформированной из нее накипи.
6. Солевые отложения из природных пресных вод (накипь) являются
долговременной депонирующей средой, которая может служить для оценки
экологической безопасности источников питьевого водоснабжения.
Помогаем с подготовкой сопроводительных документов
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!