Фазовые равновесия и физико-химические свойства оксидов в системах ½ Ln2O3–SrO–CoO (Ln=Sm, Gd) : диссертация на соискание ученой степени кандидата химических наук : 1.4.4

📅 2021 год
Маклакова, А. В.
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Введение……………………………………………………………………………………………………………………. 3
1 Литературный обзор ……………………………………………………………………………………………….. 8
1.1 Фазовые равновесия в системах 1⁄2 Ln2O3–SrO–CoO (Ln = Sm, Gd) …………………………. 8
1.1.1 Система SrO–CoOx …………………………………………………………………………………………….. 8
1.1.2 Системы 1⁄2 Ln2O3–CoOx (Ln = Sm, Gd) ……………………………………………………………… 12
1.1.3 Системы 1⁄2 Ln2O3–SrO–CoO (Ln = Sm, Gd) ……………………………………………………….. 18
2. Постановка задачи исследования ………………………………………………………………………….. 31
3 Синтез образцов и методы исследования ……………………………………………………………….. 32
3.1 Характеристика исходных материалов и приготовление образцов ………………………….. 32
3.2 Методика рентгеновских исследований ………………………………………………………………… 34
3.3 Термогравиметрический анализ ……………………………………………………………………………. 35
3.4 Методика определения абсолютного значения кислородной нестехиометрии прямым восстановлением образца в потоке водорода ………………………………………………………………. 37
3.5 Методика дихроматометрического титрования ……………………………………………………… 37
3.6 Методика измерения линейного коэффициента термического расширения……………… 39
3.7 Методика измерения общей электропроводности и термо-ЭДС 4-х электродным методом ………………………………………………………………………………………………………………………………… 40
4. Результаты и их обсуждение …………………………………………………………………………………. 42
4.1 Графическое представление фазовых равновесия в системах 1⁄2 Ln2O3–SrO–CoO
(Ln = Sm,Gd) ……………………………………………………………………………………………………………. 42
4.2 Фазовые равновесия в системе 1⁄2 Sm2O3–SrO–CoO………………………………………………. 42 4.3 Фазовые равновесия в системе 1⁄2 Gd2O3–SrO–CoO ………………………………………………. 56
4.4 Кислородная нестехиометрия сложных оксидов в системах 1⁄2 Ln2O3-SrO-CoO (Ln = Gd, Sm) на воздухе …………………………………………………………………………………………………………. 69
4.5 Физико-химические свойства сложных оксидов ………………………………………………….. 76
4.5.1 Термическое расширение сложных оксидов в системах 1⁄2 Ln2O3–SrO–CoO (Ln = Sm, Gd) на воздухе………………………………………………………………………………………………………….. 76
4.5.2 Электротранспортные свойства сложных оксидов в системах 1⁄2 Ln2O3-SrO-СоO (Ln = Gd, Sm) на воздухе ………………………………………………………………………………………….. 81
4.5.3 Реакционная способность твердых растворов Sr1-хLnхCoO3-δ (Ln = Sm, Gd) по отношению к материалам твердых электролитов ………………………………………………………. 84
Заключение ……………………………………………………………………………………………………………… 87 Список сокращений и условных обозначений …………………………………………………………… 89 Cписок литературы ………………………………………………………………………………………………….. 91

Соединения с перовскитоподобной структурой на основе частично-замещенных сложных оксидов общего состава Ln1-xMxMeO3-δ или LnMMe2O6-δ (Ln = редкоземельный элемент, M = щелочноземельный элемент, Me = 3d металл) обладают уникальным комплексом физико-химических свойств. В зависимости от состава и внешних условий в этих оксидах может происходить структурное упорядочение атомов лантаноида и щелочноземельного металла (чаще всего Ва) в А подрешетке, приводящее к локализации кислородных вакансий в определенных плоскостях, и, как следствие, быстрому транспорту кислородных ионов. Высокая подвижность ионов кислорода, наряду с большими значениями электронной проводимости, устойчивость в окислительных атмосферах [1–5], делает эти материалы перспективными для использования в различных электрохимических устройствах, например, в качестве катодов высокотемпературных ТОТЭ, мембран для концентрирования кислорода, газовых сенсоров [1–8].
Возможности практического использования данных материалов ставят перед исследователями задачи по разработке методов синтеза, изучению кристаллической структуры, электро-транспортных и термомеханических свойств. Кислородная нестехиометрия, которая оказывает существенное влияние на многие физико-химические свойства, сложнооксидных соединений также является объектом изучения.
Данная работа посвящена изучению фазовых равновесий в системах 1⁄2 Ln2O3–SrO–CoO (Ln = Sm,Gd), а также кристаллической структуры кислородной нестехиометрии и физико-химических свойств индивидуальных соединений, образующихся в них.
Степень разработанности темы:
На момент начала выполнения работы в литературе были подробно описаны методы синтеза и физико-химические свойства сложных оксидов, образующихся в квазибинарных системах 1⁄2 Ln2O3–SrO–CoO (Ln = Sm,Gd). Данные, касающиеся кристаллической структуры оксидов в системе SrO–CoO довольно многочисленны, но в ряде случаев противоречивы. В литературе полностью отсутствовала информация о фазовых равновесиях в квазитройных системах 1⁄2 Ln2O3–SrO–CoO (Ln = Sm,Gd). В литературе имелась разрозненная информация о получении и функциональных свойствах отдельных составов (термомеханические,

4
электротранспортные свойства), однако данные некоторых авторов существенно разнятся и требуют уточнения.
Цели и задачи работы:
Целью данной работы является изучение фазовых равновесий, установление влияния состава на кристаллическую структуру, кислородную нестехиометрию и физико-химические свойства сложных оксидов на основе РЗЭ (Sm, Gd), стронция и кобальта. Для достижения указанной цели исследования были поставлены следующие задачи:
1. Определить области гомогенности твердых растворов в системах 1⁄2 Ln2O3–SrO–CoO (Ln = Sm,Gd) и их кристаллическую структуру;
2. Получить зависимости параметров элементарных ячеек сложных оксидов от концентрации заместителя;
3. Определить фазовые равновесия в системах 1⁄2 Ln2O3–SrO–CoO (Ln = Sm, Gd) и построить соответствующие диаграммы состояния при 1100С на воздухе;
4. Построить температурные зависимости кислородной нестехиометрии для сложных оксидов Sr1-xLnxСоO3-, Sr2-yLnyCoO4+, Sr3-zLnzCo2O7- (Ln = Sm, Gd) на воздухе;
5. Вычислить коэффициент термического расширения для однофазных сложных оксидов Sr1-xLnxСоO3-, Sr2-yLnyСоO4+. Исследовать химическую совместимость сложных оксидов Sr1-хGdхCoO3-δ (x = 0.3), Sr1-хSmхCoO3-δ (x = 0.1, 0.4), Sr2-yLnyCoO4+δ (Ln = Sm, Gd; y = 1.1) с материалом твердого электролита (Ce0.8Sm0.2O2-δ и Zr0.85Y0.15O2-δ);
6. Получить зависимости общей электропроводности и коэффициента термо-ЭДС сложных оксидов Sr1-xLnxСоO3-, Sr2-yLnyСоO4+ (Ln = Sm, Gd) в интервале температур 25 ≤ T,°С ≤ 1100 на воздухе.
Научная новизна:
1. Уточнены области гомогенности и структурные параметры сложных оксидов Sr1-xLnxСоO3-, Sr2-yLnyСоO4+ и Sr3-zGdzCo2O7- (Ln = Sm, Gd) при 1100°C на воздухе;
2. В результате систематических исследований фазовых равновесий и построены изобарно-изотермические диаграммы состояния систем 1⁄2 Ln2O3–SrO–CoO (Ln = Sm,Gd) при 1100°C на воздухе;
3. Впервые получены функциональные зависимости кислородной нестехиометрии сложных оксидов Sr1-xGdxCoO3–δ (x = 0.1–0.4), Sr1-xSmxCoO3–δ (x = 0.1–0.5), Gd2SrCo2O7-δ от температуры;

5
4. Рассчитаны коэффициенты термического расширения оксидов Sr1-хLnхCoO3-δ, Sr2-yLnyCoO4+ в широком интервале температур на воздухе;
5. Впервые получены зависимости общей электропроводности Sr0.8Gd1.2CoO4+δ, Sr1.1Sm0.9CoO4+δ, Sr0.9Sm1.1CoO4+δ от температуры;
6. Впервые исследована термическая и химическая совместимость сложных оксидов Sr1-хGdхCoO3-δ (x = 0.3), Sr1-хSmхCoO3-δ (x = 0.1, 0.4), Sr2-yLnyCoO4+δ (Ln = Sm, Gd, y = 1.1) с материалом твердого электролита (Ce0.8Sm0.2O2 и Zr0.85Y0.15O2).
Практическая и теоретическая ценность:
Построенные изобарно-изотермические диаграммы состояния систем 1⁄2 Ln2O3–SrO–CoO (Ln = Sm,Gd) являются фундаментальным справочным материалом и могут быть использованы при анализе родственных и более сложных систем.
Полученные в работе результаты могут быть использованы при выборе конкретных составов и условий синтеза материалов электродов высокотемпературных топливных элементов, катализаторов дожига выхлопных газов, газовых сенсоров.
Значения электротранспортных характеристик, КТР оксидов, образующихся в системах 1⁄2 Ln2O3–SrO–CoO (Ln = Sm, Gd), а также сведения об их химической совместимости с электролитами могут быть использованы для оценки их возможного применения в различных электрохимических устройствах.
Методология и методы исследования:
Синтез образцов для исследования осуществляли по стандартной керамической, глицерин-нитратной технологиям и с помощью метода соосаждения. Определение фазового состава образцов проводили методом рентгенофазового анализа на дифрактометрах Equinox- 3000 (CuKα-излучение, в интервале углов 2 =10–90, шагом 0.012), Shimadzu XRD-7000 (CuKα-излучение, в интервале углов 2 =20–90, шагом 0.01 и выдержкой в точке 2 секунды) и Дрон-6 (CuK-излучение, в интервале углов 2 =20–120, с шагом 0.01–0.04, с выдержкой в точке 10 сек) при 25°С на воздухе. Идентификацию фаз осуществляли при помощи картотеки ICDD и программного пакета “Fpeak” (ИЕНиМ, УрФУ). Уточнение структуры анализируемых образцов проводили методом полнопрофильного анализа Ритвелда с помощью программы “Fullprof 2008”. Термогравиметрические исследования проводили на термоанализаторе STA 409 PC фирмы Netzsch Gmbh. в интервале температур 25–1100°C. Определение абсолютного значения кислородного дефицита проводили методами прямого восстановления образцов в токе водорода и окислительно-

6
восстановительного титрования. Измерения общей электропроводности и коэффициента термо-ЭДС проводили 4-х контактным методом на постоянном токе в интервале температур 25–1000°C. Измерения термического расширения керамических образцов проводились на дилатометре DIL 402 C фирмы Netzsch Gmbh на воздухе в интервале температур 30–1100°C со скоростью нагрева и охлаждения 2°C/мин. Химическую совместимость сложных оксидов по отношению к материалу электролита изучали методом контактных отжигов в температурном интервале 800–1100°C на воздухе.
Положения, выносимые на защиту:
1. Изобарно-изотермические диаграммы состояния квазитройных систем 1⁄2 Ln2O3–SrO–CoO (Ln = Sm,Gd) при 1100°C на воздухе;
2. Значения ширины областей гомогенности и структурные параметры твердых растворов Sr1-xLnxCoO3-, Sr2-yLnyCoO4+, Sr3-zGdzCo2O7- (Ln = Sm, Gd);
3. Функциональные зависимости кислородной нестехиометрии от температуры для сложных оксидов, образующихся в системах 1⁄2 Ln2O3–SrO–CoO (Ln = Sm, Gd);
4. Зависимости общей электропроводности и коэффициента термо-ЭДС сложных оксидов Sr1-хGdхCoO3-δ (х = 0.1, 0.2, 0.3, 0.4), Sr1-хSmхCoO3-δ (х = 0.1, 0.4), Sr0.9Sm1.1CoO4+δ, Sr2-yGdyCoO4+δ (y = 0.8; 1.2) от температуры;
5. Значения КТР и результаты исследования химической совместимости сложнооксижных фаз, образующихся в системах 1⁄2 Ln2O3–SrO–CoO (Ln = Sm,Gd) с материалами твердого электролита топливного элемента.
Публикации:
По материалам диссертации опубликовано 4 статьи в рецензируемых научных журналах, входящих в международные базы цитирования WOS и Scopus, и 26 тезисов докладов международных и всероссийских конференций.
Степень достоверности и апробация работы:
При проведении измерений использовали современное высокоточное оборудование. Данные, полученные разными методами и/или в нескольких параллелях, совпадают или хорошо коррелируют между собой, что гарантирует достоверность результатов. В целом, полученные результаты хорошо согласуются с имеющимися в литературе. Основные результаты, полученные в работе, доложены и обсуждены на всероссийских и международных конференциях: Российская молодежная научная конференция “Проблемы теоретической и экспериментальной химии”, Екатеринбург, 2017-2020; Всероссийская

7
конференция молодых ученых-химиков (с международным участием), 2017-2019, Нижний Новгород; Всероссийская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов», Москва, 2017-2019; 16th IUPAC High Temperature Materials Chemistry Conference (HTMC-XVI), Ekaterinburg, Russia, 2018; 13-й симпозиум с международным участием «Термодинамика и материаловедение», Новосибирск, 2020; VI Международная молодежная научная конференция ФТИ, Екатеринбург, 2017, 2019.
Работа выполнялась в рамках проекта РФФИ «Стронций-замещенные кобальтиты РЗЭ (Pr, Gd): фазовые равновесия, реальная структура, функциональные свойства» (грант No 19- 33-90058 Аспиранты) и гранта Министерства науки и образования РФ (Соглашение No 075- 15-2019-1924).
Структура и объём работы:
Диссертационная работа состоит из введения, четырех глав, заключения и списка литературы. Материал изложен на 100 страницах, работа содержит 32 таблицы, 62 рисунка, список литературы 127 наименований.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    user1250010 Омский государственный университет, 2010, преподаватель,...
    4 (15 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    21 Выполненная работа
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Татьяна П.
    4.2 (6 отзывов)
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки ... Читать все
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки в одном из крупнейших университетов Германии.
    #Кандидатские #Магистерские
    9 Выполненных работ

    Последние выполненные заказы

    Другие учебные работы по предмету

    Моделирование деградации кермета Ni-Zr0.82Y0.18O0.91 и композитного эффекта в ионной проводимости композитов La2Mo2O9-La2Mo3O12
    📅 2022год
    🏢 ФГБУН Институт высокотемпературной электрохимии Уральского отделения Российской академии наук
    Электрохимически активные мономеры и полимеры с пендантными группами на основе соединений 9Н-тиоксантен-9-онового ряда
    📅 2022год
    🏢 ФГБУН Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук
    Кинетика и механизм радикальных реакций гидрофильных тиолов
    📅 2021год
    🏢 ФГБУН Институт биохимической физики им. Н.М. Эмануэля Российской академии наук
    Исследование влияния сопряжения p-электронов в углеродных нанотрубках на их эмиссионные свойства
    📅 2021год
    🏢 ФГАОУ ВО «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»
    Хемилюминесценция в реакции ароматических нитрозосоединений с трифенилфосфином
    📅 2021год
    🏢 ФГБНУ Уфимский федеральный исследовательский центр Российской академии наук
    Термодинамические свойства сополимеров на основе хитозана
    📅 2021год
    🏢 ФГАОУ ВО «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»