Физико-химические закономерности получения и применение литых стеклокристаллических материалов шпинелид-пироксенового состава из природного и техногенного сырья

Игнатова, Анна Михайловна
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Введение ………………………………………………………………………………………………………… 5
Глава 1. ФИЗИКО-ХИМИЧЕСКИЕ И ТЕХНОЛОГИЧЕСКИЕ ПРОБЛЕМЫ
ПОЛУЧЕНИЯ ЛИТЫХ СТЕКЛОКРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ ……………. 5
1.1. Литые стеклокристаллические материалы как разновидность неметаллических
материалов……………………………………………………………………………………………………. 20
1.2. Краткая история и основные положения камнелитейного производства ………….. 24
1.3. Рекомендации к параметрам сырья для получения литых стеклокристаллических
материалов и перспективы пригодности сырья Уральского региона …………………….. 27
1.4. Теория и практика получения литых стеклокристаллических материалов ……….. 39
1.5. Физико-химические и технологические проблемы получения новой группы литых
стеклокристаллических материалов …………………………………………………………………. 50
1.6. Цель и задачи диссертационного исследования ……………………………………………. 60
Глава 2. ОБЪЕКТЫ, ПРЕДМЕТ, МЕТОДИКИ И МЕТОДОЛОГИЯ
ИССЛЕДОВАНИЙ ……………………………………………………………………………………….. 64
2.1. Объекты исследований……………………………………………………………………………… 64
2.2. Методика получения опытных образцов …………………………………………………….. 68
2.3. Предмет исследований ……………………………………………………………………………… 72
2.4. Методы и методики исследований ……………………………………………………………… 72
2.5. Методология диссертационного исследования …………………………………………….. 88
Глава 3. ФИЗИКО-ХИМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ РЕАКЦИЙ В
МИНЕРАЛЬНОМ СЫРЬЕ ПРИ ДУГОВОЙ ПЛАВКЕ……………………………………….. 90
3.1. Исследование химических превращений при плавлении природного сырья …….. 90
3.2. Исследование химических превращений при плавлении техногенного сырья … 102
3.3. Разработка регламента оценки пригодности природного и техногенного сырья 116
Выводы по главе 3 ……………………………………………………………………………………….. 120
Глава 4. ФИЗИКО-ХИМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ ФАЗООБРАЗОВАНИЯ В
РАСПЛАВАХ ШПИНЕЛИД-ПИРОКСЕНОВОГО СОСТАВА …………………………. 122
4.1. Исследование вязкости расплава из природного и техногенного сырья …………. 123
4.2. Исследование ликвационной дифференциации жидкой фазы ………………………. 128
4.3. Исследование зависимоти содержания оксидов в жидкой фазе в зависимости от
степени переохлаждения расплава …………………………………………………………………. 136
4.4. Взаимосвязь состава жидкой и твердой фаз с показателями соотношения кислых и
основных оксидов, фугитивностью кислорода и скоростями образования центров
кристаллизации и их роста в расплаве …………………………………………………………….. 140
4.5. Реакции фазообразования в зонах плавильного пространства электродуговых
печей …………………………………………………………………………………………………………. 152
Выводы по главе 4 ……………………………………………………………………………………….. 156
Глава 5. ФИЗИКО-ХИМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ СТРУКТУРО-
ОБРАЗОВАНИЯ ЛИТЫХ СТЕКЛОКРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
ШПИНЕЛИД-ПИРОКСЕНОВОГО СОСТАВА……………………………………………….. 159
5.1. Исследование составляющих и морфометрических параметров структуры литого
стеклокристаллического материала шпинелид-пироксенового состава на основе
природного и техногенного сырья………………………………………………………………….. 160
5.2. Исследование физических свойств …………………………………………………………… 180
5.3. Исследование механических свойств при статических нагрузках …………………. 191
5.4. Исследование механических свойств при ударно-волновых нагрузках ………….. 201
5.5. Взаимосвязь структуры литого стеклокристаллического материала шпинелид-
пироксенового состава и его функциональных свойств …………………………………….. 214
Выводы по главе 5 ……………………………………………………………………………………….. 233
Глава 6. ТЕХНИКА И ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ ЛИТЫХ
СТЕКЛОКРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ ШПИНЕЛИД-ПИРОКСЕНОВОГО
СОСТАВА И ИЗДЕЛИЙ ИЗ НИХ …………………………………………………………………. 237
6.1. Основные принципы организации технологического процесса…………………….. 237
6.2. Подготовка сырьевых материалов и приготовление шихты …………………………. 240
6.3. Изготовление, подготовка и сборка литейных форм……………………………………. 243
6.4. Плавление шихты и приготовление расплава, его выпуск из печи и заливка в
литейные формы………………………………………………………………………………………….. 245
6.5. Затвердевание отливок и извлечение их из форм ………………………………………… 254
6.6. Термическая обработка отливок ………………………………………………………………. 256
6.7. Режимные параметры технологического процесса получения литых стеклокристал-
лических материалов шпинелид-пироксенового состава …………………………………… 260
6.8. Очистка, обработка отливок и складирование готовой продукции ………………… 262
6.9. Идентификация и прослеживаемость продукции ……………………………………….. 263
6.10. Действия при выявлении несоответствующей продукции ………………………….. 263
6.11. Механическая обработка литых стеклокристаллических материалов………….. 264
6.12. Специальные изделия промышленного и художественного назначения из литых
стеклокристаллических материалов шпинелид-пироксенового состава ………………. 268
Выводы по главе 6 ……………………………………………………………………………………….. 286
ЗАКЛЮЧЕНИЕ …………………………………………………………………………………………… 288
ОБЩИЕ ВЫВОДЫ ……………………………………………………………………………………… 290
СПИСОК ЛИТЕРАТУРЫ …………………………………………………………………………….. 297
ПРИЛОЖЕНИЯ ………………………………………………………………………………………….. 339

Актуальность проблемы. В начале нового тысячелетия силикатные и
тугоплавкие неметаллические материалы продолжают занимать важнейшее место в деятельности человека. Разработка новых технологий силикатных и тугоплавких неметаллических материалов и их применение важны для в решения глобальных экономических проблем, связанных с малоэффективным использованием природных и техногенных ресурсов, недостатком технологий, определяющих лидерство в технике материалов, поддержание экономического роста и сохранение конкурентоспособности на мировом рынке. Эти материалы помогают снизить себестоимость продукции, организовать гибкое производство в условиях рынка.
Литые стеклокристаллические материалы являются разновидностью силикатных и тугоплавких неметаллических материалов. Их плотность составляет 2,7–2,9 г/см3, механическая прочность при сжатии 240−290 МПа, твердость по Моосу 6−8, низкий коэффициент теплопроводности около 4,6 Вт/м·°С при температуре 100 °С, и коэффициент термического расширения α составляет 8,0·10−6 °C−1. Основной сферой применения изделий из литых стеклокристаллических материалов является защита от абразивного и коррозионного износа конструкций, гидроциклонов, инженерных коммуникаций. Срок службы литых стеклокристаллических материалов в условиях абразивного износа превышает срок службы керамических аналогов в 2−3 раза и составляет 10−15 лет. Однако в связи с малоизвестностью использование таких материалов в качестве конструкционных составляет всего 1−2 %.
Схожесть литых стеклокристаллических материалов с керамическими по уровню механических, теплофизических и эстетических свойств предполагает возможность расширения сферы их применения аналогично применению керамических, например в качестве элементов бронезащиты, защитных конструкций от рентгеновского и ИК-излучений, материалов для создания маскировочных покрытий, строительных материалов и материалов для создания художественных изделий.
6
Технология литых стеклокристаллических материалов основана на расплавлении и кристаллизации расплавов из природного и техногенного сырья, содержащего оксиды кремния, алюминия, кальция, магния и железа. Эта технология позволяет реализовывать технологические решения по формообразованию изделий сложных и объемных форм, что имеет существенное значение в соответствии с исполнением приоритетных направлений развития науки, технологий и техники в РФ (Указ Президента РФ No 899 от 07.07.2011 г.), например, решением проблем рационального природопользования, безопасности и противодействия терроризму.
Существующая теория и практика технологии литых стеклокристаллических материалов и изделий ориентирована, как правило, на конкретный вид сырья или назначение продукции. Одним из факторов, сдерживающих развитие технологии и использование литых стеклокристаллических материалов, является отсутствие обобщенных физико- химических закономерностей в оценке пригодности петрургического сырья, процессов фазо- и структурообразования при нагреве, плавлении, охлаждении, затвердевании и кристаллизации расплавов, формировании изделий в литейных формах и последующей термической обработке.
Установление физико-химических закономерностей последовательно протекающих неравновесных процессов на стадиях плавления природного и техногенного сырья, затвердевания и кристаллизации расплавов, разработка и реализация технологии получения и применение новой группы литых стеклокристаллических материалов с заданными свойствами. является актуальным.
Степень разработанности темы диссертационного исследования.
Наибольший вклад в развитие каменного литья внесли украинские ученые в период 1955−1975 годов. Основные разработки по получению износостойких камнелитых изделий были проведены в период 1970−1985 годов основателями уральской школы каменного литья.

7
Исследования физико-химических процессов плавления природного и техногенного сырья для получения литых стеклокристаллических материалов различного состава и назначения проводились выдающимися учеными и научными школами, сформированными на базе исследовательских и образовательных организаций, среди которых: Ф.Ю. Левинсон-Лессинг, И.Е. Липовский, В.А. Дорофеев, Г.А. Рашин, А. Пеликан, Институт проблем литья АН УССР, Украина (Б.Х. Хан, В.В. Вагин); Уральский политехнический институт (Ю.Г. Ковалев, В.А. Чечулин, В.М. Карпов, В.С. Балин, А.И. Новиков, В.В. Чунаев); Магнитогорский государственный технический университет им. Г.И. Носова (В.П. Чернов); Российский химико-технологический университет им. Д.И. Менделеева (И.И. Китайгородский, П.Д. Саркисов, В.С. Козловский, Н.М. Павлушкин, А.Г. Минаков); Карельский научный центр Российской академии наук (Г.А. Лебедева, Г.П. Озерова, В.П. Ильина); Национальный исследовательский институт стекла, Чехия (Lubomir Kopecky, Jan Voldan). Опубликованные в научной литературе сведения о физико-химических процессах получения каменного литья не являются универсальными, они отражали частные случаи, зачастую с привязкой к территориальному расположению места добычи сырья.
В диссертации Н.Ф. Васильевой «Разработка технологии каменного литья повышенной термостойкости на основе пироксенового порфирита и доменного шлака» исследованы процессы минералообразования в стеклах и расплавах на основе пироксенового порфирита и доменный шлак и предложена технология получения термостойкого каменного литья. Значительный вклад в исследование стеклокристаллических материалов и технологий их изготовления внесли В.С. Бессмертный, В.В. Голубков, В.А. Кренёв, П.Д. Саркисов, В.Н. Сигаев, С.В. Фомичев, Е.А. Яценко.
Связь диссертационной работы с целевыми программами страны, Пермского края, предприятий и организаций. Диссертационная работа, выполненная на основе реализации грантов и инициативных достижений, посвящена повышению эффективного использования природных минеральных

8
ресурсов и техногенных образований горно-металлургической отрасли для обеспечения комплексного и сбалансированного развития Пермского края, повышения его конкурентоспособности, роста качества жизни населения, улучшения демографической ситуации, перевода экономики на инновационный путь развития, в частности за счет производства плавленых литых изделий широкого функционального назначения. Результаты работы соответствуют целям и задачам краевых целевых программ «Развитие и использование минерально- сырьевой базы Пермского края на 2007–2010 годы» и «Программа социально- экономического развития Пермского края на 2012–2016 годы», утвержденных Законодательным собранием Пермского края в Законе Пермского края от 02.04.2010 No 598–ПК «О стратегическом планировании социально- экономического развития Пермского края» и постановлении Законодательного собрания Пермского края от 01.12.2011 No 3046 «Об утверждении Стратегии социально-экономического развития Пермского края до 2026 года».
Диссертационная работа выполнена по тематике гранта Президента РФ (МК–4399.2014.10 для молодых кандидатов наук «Научные и технологические основы синтеза функциональных литых неметаллических материалов, изделий и конструкций для предохранения и обеспечения защиты жизнедеятельности населения и технических объектов от террористического воздействия»), договоров научно-исследовательских работ для ОАО «Первоуральский завод горного оборудования», ОАО Научно-производственное объединение «Композит» (г. Москва), ПАО «Ависма» (г. Березники), ООО НПП «Гелий» (г. Пермь), ЗАО НПО «Специальные материалы» (г. Санкт Петербург).
Объект исследования. Природные и техногенные минеральные разновидности нерудного сырья Урала, включая базальтоидные и габброидные породы с содержанием оксида кремния от 35 до 80 %; отходы обогащения и переработки минерального сырья и металлургические шлаки предприятий Пермского края и Свердловской области, а также стеклокристаллические материалы, полученные на их основе.

9
Предмет исследования. Физико-химические процессы получения оксидных силикатных расплавов, фазо- и структурообразование в расплавах при затвердевании и кристаллизации, зависимости свойств литых стеклокристаллических материалов от их фазового состава и структуры.
Цель диссертационной работы. Установление физико-химических закономерностей получения и применение литых стеклокристаллических материалов шпинелид-пироксенового состава из природного и техногенного сырья и реализация научных и практических разработок по получению новой группы литых стеклокристаллических материалов в изделиях различного назначения.
Задачи диссертационной работы:
1. выявление закономерностей изменения состава жидкой фазы в расплавах стеклокристаллических материалов шпинелид-пироксенового состава при неравновесных условиях зарождения и роста центров кристаллизации;
2. установление механизмов структурообразования, формирования шпинелид-пироксенового состава сферолитной структуры и оптимизация условий получения литых стеклокристаллических материалов шпинелид-пироксенового состава на основе пригодного петрургического сырья;
3. установление закономерностей описывающих взаимосвязь свойств литых стеклокристаллических материалов шпинелид-пироксенового состава с морфометрическими параметрами структурных составляющих и их химическим составом;
4. физико-химическое обоснование выбора составов шихтовых композиций природного и техногенного сырья, обеспечивающих высокий уровень механических характеристик и эксплуатационных свойств новой группы литых стеклокристаллических материалов шпинелид-пироксенового состава;
5. изучение поведения и выявление закономерностей процессов плавления природного и техногенного сырья Уральского региона при дуговом переплаве;

10
6. разработка критериев выбора и оценки пригодности сырья, определение граничных значений содержания оксидных компонентов в шихтовых композициях для получения новой группы литых стеклокристаллических материалов;
7. разработка технологии и последующая реализация малотоннажного производства новой группы литых стеклокристаллических материалов шпинелид- пироксенового состава и изделий из них различного назначения.
Научная новизна работы:
1. Установлено, что формирование литых стеклокристаллических материалов шпинелид-пироксенового состава (пироксен – 88−95 %; шпинелид – 1−6 %) со сферолитной структуры определяется составом расплава мас.%: SiO2 – 44–48%; Al2O3 – 13–17; MgO – 13–16,5; CaO – 11–14; FeO (Fe2O3) не более 9,5. Формирование шпинелидной фазы обуславливается присутствием в расплаве Cr2O3 более 1 % и Al2O3 – 13–17 %. Формирование пиркосеновых фаз обеспечивается содержанием в расплаве оксидов SiO2, MgO, CaO, FeO (Fe2O3). Степень кристалличности 94−97% достигается при охлаждении расплава до температур 1360−1230oС.
2. Установлено, что формирование фазового состава литых стеклокристаллических материалов из расплава начинается с кристаллизации шпинелида (RO·Al2O3; RO·Cr2O3) при Al2O3(Cr2O3)/RO = 0,1…0,3 и завершается последовательным эпитаксиальным рост на его поверхности вначале двух/четырехцепочных клинопироксенов, а затем ортопироксенов. Последовательность формирования структурных составляющих обеспечивается отношениями в расплаве SiO2/R2O3 = 2…4,5; SiO2/(RO + R2O + R2O3) = 0,78…1,03 и летучестью кислорода (logfO2 = −9,6…−5,5). Образованные двухфазные сферолиты со шпинелидным ядром и пироксеновой оболочкой равномерно распределяются в стеклофазе, которая образует сетчатый каркас дендритного ветвления. Основными реакциями в процессе фазообразования являются реакции «клинопироксен – ортопироксен» и «оливин – ортопироксен», коэффициенты

11
распределения железа для указанных реакциях в первом случае составляют 1,86– 2,35, а во втором 0,03–0,20.
3. Впервые установлено, что структура литых стеклокристаллических материалов адекватно описывается сферолитно-сетчатой моделью, параметрами которой являются: диаметр сферолита (2−70 мкм), размер шпинелида (1–4 мкм), толщина прослойки пироксенов (0,1−10 мкм), толщина прослойки стеклофазы (0,1−7 мкм), количество сферолитов в единице объема ((0,5…1,5)·106 шт./м3), индекс сферолита, выраженный отношением толщины пироксеновой прослойки к приведенному диаметру шпинелидного ядра (1–10) и степень разветвлённости стеклофазы, определяемой отношением общего количества ветвей к общему количеству их тройных и четвертных пересечений (0,09–0,60).
4. Установлено, что размер сферолитов в структуре литых стеклокристаллических материалов шпинелид-пироксенового состава определяет отношение скоростей роста и образования зародышей кристаллизации (vp/vз). При отношении vp/vз равном 0,2−0,3 размер сферолитов составляет 4-16 мкм, при vp/vз равном 0,3−0,4 − 16−130 мкм.
5. Установлены зависимости свойств литых стеклокристаллических материалов, а именно коэффициента износа 0,01−0,1; термостойкости до 200 теплосмен при максимальной температуре эксплуатации 750 °С и рассеивающей способностью к механическому удару 40−50 Дж/мм3 от параметров структуры, а именно содержания шпинелида (3−5 %); пироксена − (89,5−91,4%); стеклофазы − (4,8−6,3%); диаметра сферолита (2,8−70 мкм), размера шпинелида (1–4 мкм), толщины прослойки пироксенов (0,4−35 мкм), толщины прослойки стеклофазы (0,1−7 мкм), количества сферолитов в единице объема ((0,5…1,5)·106 шт./м3), индекса сферолита, выраженного отношением толщины пироксеновой прослойки к приведенному диаметру шпинелидного ядра (1,2–10) и степенью разветвлённости стеклофазы, определяемой отношением общего количества ветвей к общему количеству их тройных и четвертных пересечений (0,09–0,60), что

12
позволило предложить параметры структуры литых стеклокристаллических материалов шпинелид-пироксенового состава различного назначения.
6. Установленные закономерности определяют, что структура литых стеклокристаллических материалов различного назначения, обладает следующими параметрами: износостойкость обеспечивается фазовым составом, мас.%: шпинелиды − 3; пироксены − 91,8−91,4; стеклофаза − 5,2−5,6; диаметром сферолита 14,0–29,0 мкм, величиной индекса сферолита 1,9–2,1, толщиной стеклофазной прослойки 3-5 мкм со степенью разветвлённости 0,20–0,60 и количеством сферолитов в единице объема (0,5…1,5)·106 шт/мм3; диссипативная способность − фазовым составом, мас.%: шпинелиды − 5; пироксены − 88,7−89,5; стеклофаза − 5,5−6,3; диаметром сферолита 2,8–10,5 мкм, величиной индекса сферолита 1,2–1,5, толщиной стеклофазной прослойки 5–7 мкм со степенью разветвлённости 0,12–0,20 и количеством сферолитов в единице объема (6…7)·106 шт/мм3; термостойкость − фазовым составом, мас.%: шпинелиды − 4; пироксены − 91−91,2; стеклофаза − 4,8−5,0; диаметром сферолита 8–70,0 мкм, величиной индекса сферолита 9–10, толщине стеклофазной 0,1–1,5 мкм со степенью разветвлённости 0,09–0,11 и количеством сферолитов в единице объема (0,9…1,1)·106 шт/мм3.
7. Установлено, что условием достижения вязкости расплава для получения литых стеклокристаллических материалов шпинелид-пироксенового состава не более 30 Па·с является соотношение SiO2/R2O3 = 2…4,5 и ионный баланс расплава (NSР/NXme), выраженный, как отношение грамм-ионов соединений серы и фосфора (S4+, S6+ и P5+) к грамм-ионам металлов (Al3+, Fe3+, V5+, Cr3+) в диапазоне 0,005−0,1 при содержании V2O5 не более 1%.
8. Впервые установлено, что деформация и разрушение литых стеклокристаллических материалов шпинелид-пироксенового состава при статических нагрузках сопровождаются движением и накоплением дефектов внутри шпинелидов и пироксенов. При ударно-волновых нагрузках со скоростью от 200 до 3000 м/с процессы преобразования энергии удара в работу механического

13
разрушения реализуются в ограниченном объеме материала в месте удара, диссипирующая способность в этом объёме достигает 40−50 Дж/мм3, что позволяет сравнивать литые стеклокристаллические материалы шпинелид-пироксенового состава с корундовой керамикой.
Теоретическая значимость работы:
1. Расширены представления и получены новые данные о процессах плавления и кристаллизации фаз в многокомпонентных системах SiO2−Al2O3−RO−R2O (RO – CaO, MgO, FeO; R2O − Na2O, K2O). Получены новые сведения о процессах плавления сложных многокомпонентных минеральных силикатных систем в присутствии соединений серы и фосфора.
2. Получены сведения о физико-химических условиях, обеспечивающих формирование сферолитной структуры литых стеклокристаллических материалов шпинелид-пироксенового состава. Расширены представления о влиянии ионного баланса на скорость образования количества центров кристаллизации и скорость роста центров кристаллизации, на формирование структуры и обеспечение свойств литых стеклокристаллических материалов шпинелид-пироксенового состава при разной степени переохлаждения расплава.
3. Определена взаимосвязь между соотношениями элементов макроструктуры (пироксеновый сферолит с шпинелидным ядром и стеклофаза), составом, размером кристаллов, их количеством в единице объема материала и эксплуатационными свойствами новой группы литых стеклокристаллических материалов шпинелид-пироксенового состава.
4. Выявлены особенности деформации и разрушения новой группы литых стеклокристаллических материалов шпинелид-пироксенового состава в условиях статических и ударно-волновых нагрузок.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    AleksandrAvdiev Южный федеральный университет, 2010, преподаватель, канд...
    4.1 (20 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    28 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ

    Последние выполненные заказы

    Другие учебные работы по предмету