Некоторые обратные задачи для квазилинейных параболических уравнений и систем

Коршун, Кирилл Викторович

Введение ………………………………. 4 Глава1.Вспомогательныепредложения……………….. 16
1.1 1.2 1.3 1.4 1.5
Основные обозначения, определения и теоремы . . . . . . . . . . 16 Теоремы существования и единственности решения задачи Коши 17 Принцип максимума для параболического уравнения 2-го порядка 18 Формулировка метода слабой аппроксимации . . . . . . . . . . . . 19 Одна теорема сходимости метода слабой аппроксимации . . . . . 20 О задаче идентификации функции источника для уравнения типа
Глава 2. Бюргерса………………………………. 22
2.1 ЗадачаКоши………………………… 22
2.1.1 Постановказадачи………………….. 22
2.1.2 Переходотобратнойзадачикпрямой. . . . . . . . . . . . 23
2.1.3 Доказательство разрешимости прямой задачи . . . . . . . 23
2.1.4 Доказательство существования решения обратной задачи . 29
2.1.5 Доказательство единственности решения обратной задачи 30
2.2 Краеваязадача……………………….. 32
2.2.1 Постановказадачи………………….. 32
2.2.2 ПереходоткраевойзадачикзадачеКоши . . . . . . . . . 33
2.2.3 Доказательство выполнения краевых условий . . . . . . . 34
2.2.4 Доказательство единственности решения краевой задачи . 37
Глава 3. О задаче идентификации функции источника для двумерного уравнениятипаБюргерса………………………. 39
3.1 Постановказадачииполученныерезультаты . . . . . . . . . . . . 39 3.1.1 ЗадачаКоши…………………….. 39 3.1.2 Краеваязадача……………………. 40
3.2 ЗадачаКоши………………………… 41
3.2.1 Переход от обратной задачи к прямой задаче . . . . . . . . 41
3
3.2.2 Доказательство разрешимости прямой задачи . . . . . . . 41
3.2.3 Доказательство существования решения обратной задачи . 46
3.2.4 Доказательство единственности решения обратной задачи 47
3.3 Краеваязадача……………………….. 48
3.3.1 ПереходоткраевойзадачикзадачеКоши . . . . . . . .
3.3.2 Доказательство существования решения краевой задачи
3.3.3 Доказательство единственности решения краевой задачи
. 48 . 49 . 52
Глава 4. О разрешимости задачи Коши для системы нагруженных пара- болическихуравнений………………………… 56 4.1 Постановказадачииполученныерезультаты . . . . . . . . . . . . 56 4.2 Пример …………………………… 57 4.3 Доказательстворазрешимости ……………….. 59
Глава 5. Об одной обратной задаче для параболического уравнения с па- раметром………………………………. 64
5.1 Постановказадачи……………………… 64
5.2 ПереходоткраевойзадачикзадачеКоши . . . . . . . . . . . . . 66
5.3 Доказательство существования решения задачи Коши . . . . . . . 67
5.4 Доказательство выполнения краевых условий . . . . . . . . . . . 72
5.5 Доказательство единственности решения краевой задачи . . . . . 74
Заключение……………………………… 77 Списоклитературы …………………………. 78 Списокработавторапотемедиссертации ……………… 85

Актуальность темы исследования
Обратными задачами для дифференциальных уравнений называют за- дачи нахождения неизвестных коэффициентов дифференциальных уравнений, правой части, граничных или начальных условий, границы области. Неизвест- ные элементы начально-краевых задач определяются по некоторой дополни- тельной информации о решении уравнений. Такой информацией являются раз- личного рода условия переопределения [15], [35].
Обратные задачи для дифференциальных уравнений математической фи- зики в настоящий момент играют большую роль в естественных науках и их приложениях [2], [52], [23], [27], [36]. Коэффициентные обратные задачи – это задачи, в которых вместе с решением дифференциального уравнения неизвест- ным является и один (или несколько) из его коэффициентов. Многие важные прикладные вопросы, касающиеся диффузионных процессов, электромагнит- ных колебаний, упругих деформаций, геофизики, сейсмологии, компьютерной томографии и обработки изображений, теории рассеяния, акустики, оптики, теории колебания молекул, радиолокации, гравиметрии, и др. приводят к по- добным обратным задачам. [39], [37], [17], [26], [1], [61], [41].
Степень разработанности темы исследования
Теория обратных задач является важным самостоятельным направлением исследований в области дифференциальных уравнений.
В настоящее время теория обратных задач математической физики разви- вается представителями ряда отечественных математических школ, в том числе Московской (основанной А.Н. Тихоновым) и Сибирской (основанной М.М. Лав- рентьевым и В.Г. Романовым).
Вопросы корректности обратных задач для параболических уравнений, а также задач идентификации коэффициентов или функции источника для па- раболических уравнений изучались в работах Ю.Е. Аниконова, Б.А. Бубнова,
5
Ю.Я. Белова, Е.Г. Саватеева, В.М. Волкова, А.И. Прилепко, В.В. Соловьева, А.И. Кожанова, И.В. Фроленкова и других [48], [7], [60], [43], [44].
Ряд результатов в данном направлении получили в последнее время за- рубежные авторы из Италии, Голландии, Швеции, США, Франции, Японии и др.: G. Anger, H.D. Bui, Y. Chen, D. Colton, R. Durridge, E. Francini, J. Gottlieb, M. Grasselli, R. Kress, G. Kunetz, J.Q. Lin, A. Lorenzi, J.M. Mendel, R.D. Murch, S. Rionero, M. Sondhi, S. Strom, L. Yanping, M. Yamamoto [51], [55], [57], [59].
В работе [52] Ю.Я. Беловым изучены задачи определения неизвестных коэффициентов для квазилинейных уравнений типа Бюргерса
ut(t,x)+νuux =μ(t)uxx +g(t)f(t,x), u(0,x) = u0(x), −∞ < x < ∞, u(t, x0) = φ(t), x0 = const. в случае, когда входные данные допускают преобразование Фурье по простран- ственной переменной. Целью настоящей работы является исследование разрешимости задач определения функции источника в случаях задачи Коши и первой краевой за- дачи в классах гладких функций, а также обобщение полученных результатов на уравнения большей размерности и системы уравнений. Методы исследования В работах [36], [60] приводятся методы решения различных обратных за- дач математической физики. Исследование разрешимости рассматриваемых в диссертации задач про- изводится методом, позволяющим переходить от обратной задачи к прямой за- даче для нагруженного [23] (содержащего следы неизвестных функций и их производных) уравнения. Данный метод аналогичен методу, впервые предло- женному Ю.Е. Аниконовым [4] (в котором обратная задача сводилась к пря- мой для интегродифференциального уравнения при помощи преобразования Фурье). Отказ от использования преобразования Фурье позволяет расширить 6 класс допустимых входных данных, а также позволяет рассматривать задачи с различными краевыми условиями. Для доказательства разрешимости прямых задач для нагруженных урав- нений применяется метод слабой аппроксимации, являющийся методом рас- щепления на дифференциальном уровне. Метод был впервые предложен Н.Н. Яненко [47] и А.А. Самарским [46]. В работе [14] приводится подробное описание метода и систематизированы полученные результаты. В работах [19], [47], [22] описывается применение метода слабой аппроксимации к решению различных задач математической физики. Исследование обратных задач с краевыми условиями производится мето- дом разложения входных данных в тригонометрические ряды по синусам и/или косинусам [6], с последующим их продолжением с исходной области определе- ния на всё пространство и приведением исходной краевой задачи к задаче Коши. Научная новизна и практическая значимость работы Все результаты, полученные в диссертации, являются новыми и имеют строгое доказательство. Полученные результаты имеют теоретическую значи- мость и могут быть использованы при построении общей теории обратных за- дач. Положения, выносимые на защиту 1. Доказаны теоремы существования и единственности решения задачи идентификации функции источника для уравнения типа Бюргерса в случаях задачи Коши и первой краевой задачи. 2. Доказаны теоремы существования и единственности решения задачи идентификации функции источника для двумерного уравнения типа Бюргерса в случаях задачи Коши и смешанной краевой задачи в прямоугольной области. 3. Доказана теорема разрешимости для системы нагруженных уравнений, к которой приводятся некоторые обратные задачи для параболических уравне- ний и систем. 4. Доказаны теоремы существования и единственности решения задачи 7 идентификации функции источника для параболического уравнения с пара- метром в случаях задачи Коши и первой краевой задачи. Апробация результатов По теме диссертации опубликовано 13 работ, из них работы [64, 68, 73, 74] опубликованы в изданиях, входящих в Перечень периодических научных из- даний, рекомендованных ВАК Министерства образования и науки Российской Федерации. Четыре работы написаны и опубликованы в соавторстве. Во всех случаях вклад каждого из соавторов равноценен. Основные результаты диссертации докладывались и обсуждались на на- учном семинаре кафедры математического анализа и дифференциальных урав- нений Института математики и фундаментальной информатики Сибирского федерального университета под руководством д. ф.-м. н. Белова Ю.Я. (г. Крас- ноярск, 2011 – 2015 гг.); XLIX международной научной студенческой конференции «Студент и на- учно-технический прогресс»: Математика (г. Новосибирск, 16–20 апреля 2011 г.); 50-й юбилейной международной научной студенческой конференции «Сту- дент и научно-технический прогресс»: Математика (г. Новосибирск, 13–19 ап- реля 2012 г.); 51-й международной научной студенческой конференции «Студент и на- учно-технический прогресс»: Математика (г. Новосибирск, 12–18 апреля 2013 г.); IХ Всероссийской научно-технической конференции студентов, аспиран- тов и молодых ученых с международным участием «Молодежь и наука», по- священной 385-летию со дня основания г. Красноярска, cекция «Математика, информатика: Дифференциальные уравнения» (г. Красноярск, 15–25 апреля 2013 г.); Международной конференции «Дифференциальные уравнения. Функци- ональные пространства. Теория приближений.», посвященной 105-летию со дня 8 рождения С. Л. Соболева (г. Новосибирск, 18–24 августа 2013 г.); 52-й Международной научной студенческой конференции МНСК-2014: Ма- тематика (г. Новосибирск, 11–18 апреля 2014 г.); Тринадцатой молодежной научной школе-конференции «Лобачевские чтения- 2014» (г. Казань, 24–29 октября 2014 г.); 53-й Международной научной студенческой конференции МНСК-2015: Ма- тематика (г. Новосибирск, 11–17 апреля 2015 г.); Международной конференции «Дифференциальные уравнения и матема- тическое моделирование» (г. Улан-Удэ, 22–27 июня 2015 г.); Представлялись на Лаврентьевский конкурс студенческих и аспирантских работ по математике и механике (г. Новосибирск, 2014 г.); Докладывалась и обсуждалась на семинаре Отдела условно-корректных задач Института математики им. С.Л. Соболева СО РАН под руководством член-корр. РАН, д. ф.-м. н. В.Г. Романова, д. ф.-м. н. Д. С. Аниконова (г. Но- восибирск, 8 сентября 2015 г.) Структура диссертации Диссертация состоит из введения, пяти глав, заключения, списка лите- ратуры, включающего 61 наименование и списка работ автора по теме дис- сертации, включающего 13 наименований. Объем диссертации составляет 87 страниц. В первой главе вводятся необходимые обозначения, приводятся необхо- димые определения и теоремы. Вторая глава посвящена обратной задаче идентификации функции ис- точника для уравнения типа Бюргерса. Поставленная задача относится к клас- су коэффициентных обратных задач для параболических уравнений. Данная задача исследована в случае задачи Коши и первой краевой задачи. Получе- ны условия на входные данные, гарантирующие однозначную разрешимость поставленной задачи в классах гладких ограниченных функций. Основные ре- зультаты второй главы опубликованы в работе [64]. 9 В полосе Π[0,T ] = {(t, x)|0 ≤ t ≤ T, −∞ < x < ∞} рассматривается задача Коши для уравнения типа Бюргерса ut(t,x)=μ(t)uxx +A(t)uux +B(t)u+C(t)+g(t)f(t,x), (2.3) где A(t), B(t), C(t), f(t, x) - заданные функции, с данными Коши u(0,x) = u0(x),−∞ < x < ∞. (2.4) Функции u(t, x), g(t) неизвестны. Считаем, что выполнены условие пере- определения и условие согласования u(t, x0) = φ(t), x0 = const, (2.5) φ(0) = u0(x0). (2.6) Исходная задача приводится к вспомогательной прямой задаче для нагру- женного уравнения. Существование решения вспомогательной задачи доказы- вается методом слабой аппроксимации. Вспомогательная задача разрешима в малом временном интервале, т.е. для всех t ∈ [0, t∗], где 0 < t∗ ≤ T – некоторая постоянная, зависящая от входных данных. Показывается, что решение вспомо- гательной задачи является решением исходной обратной задачи. Доказывается единственность решения обратной задачи. ВобластиQT ={(t,x)|00рассматри- вается краевая задача
ut(t,x)=μuxx +A(t)uux +Bu+g(t)f(t,x),
u(0, x) = u0(x), x ∈ [0, l], u(t,0) = u(t,l) = 0, t ∈ [0,T], u(t,x0) = φ(t), 0 < x0 < l, u0(x0) = φ(0). (2.48) (2.49) (2.50) (2.51) (2.52) 10 Предполагается, что функции u0(x), f(t,x) имеют непрерывные произ- водные по x до шестого порядка включительно, и удовлетворяют условиям u0(0) = u′′(0) = u(4)(0) = u(6)(0) = 0, 000 u0(l) = u′′(l) = u(4)(l) = u(6)(l) = 0. 000 ∂4 ∂6 f(t,0) = fxx(t,0) = ∂x4f(t,0) = ∂x6f(t,0) = 0, ∂4 ∂6 f(t,l) = fxx(t,l) = ∂x4f(t,l) = ∂x6f(t,l) = 0. (2.53) (2.54) (2.55) (2.56) Функция u0(x) продолжается на отрезок [−l,l]: u0(x) = −u0(−x) при −l ≤ x < 0. Затем функция u0(x) продолжается с [−l, l] на R до периодической по x функции. Функция f (t, x) продолжается с [0, T ] × [0, l] на [0, T ] × R до перио- дической и нечётной по x функции. Продолженные данным способом функции u0(x),f(t,x) берутся в качестве входных данных для задачи Коши ut(t,x)=μuxx +A(t)uux +Bu+g(t)f(t,x), (2.58) u(0, x) = u0(x), x ∈ (−∞, ∞). (2.59) Доказывается, что решение задачи (2.58), (2.59) удовлетворяет краевым условиям (2.50). Доказывается единственность решения задачи (2.48)–(2.52). В данной главе доказаны следующие теоремы: Теорема 2.1. Пусть выполняются условия 6 ∂ku0(x) + 6 ∂kf(t, x) + |A(t)| + |B(t)| + |C(t)| + ∂xk ∂xk k=0 k=0 +|ψ(t)| ≤ K, |f(t,x0)| ≥ K1 , K = const > 0, (t,x) ∈ Π[0,T].
Тогда существует постоянная t∗, 0 < t∗ ≤ T, такая, что в полосе Π[0,t∗] существует единственное решение (u, g) задачи (2.3)-(2.6) класса 1,4 ∂ 4 ∂s Z = {u(t, x), g(t)|u(t, x) ∈ Ct,x (Π[0,t∗]), u(t, x) + u(t, x) ≤ K, ∂t s=0 ∂xs При этом ∂u ∂k C1,4(ΠM ∗ ) = {u(t,x)| , u(t,x) ∈ C(ΠM ∗ ),k = 0,1...4}, [0,t ] t,x [0,t ] Для любого M > 0
при τ → 0.
∂ k u τ
∂xk
∂t ∂xk ∂ k u
→ 0,

∂xk C(ΠM[0,t∗])
k = 0, 1…4,
11
(t, x) ∈ Π[0,t∗], g(t) ∈ C([0, t∗])},
Теорема 2.2. Пусть выполняются условия (2.53)-(2.56), а условия Теоремы 2.1 выполнены при (t, x) ∈ QT . Тогда существует постоянная t∗, 0 < t∗ ≤ T , такая, что в области Qt∗ существует единственное решение (u, g) задачи (2.48)-(2.52) класса W = {u(t, x), g(t)|u(t, x) ∈ C1,4(Qt∗ ), g(t) ∈ C([0, t∗])}. t,x ∂ k u τ ∂ k u − → 0, k = 0, 1...4, τ → 0. ∂xk ∂xk C([0,t∗]×[0,l]) В третьей главе исследована задача идентификации функции источни- ка для двумерного уравнения типа Бюргерса. Данная задача является обоб- щением задачи (2.3)-(2.6) на двумерный случай. Рассмотрены случаи условий Коши и смешанных краевых условий в прямоугольной области. Доказана теоре- ма существования и единственности решения поставленной задачи. Результаты исследования опубликованы в работе [68]. ВполосеΠ[0,T] ={(t,x,y)|0≤t≤T,−∞ 0,ai(t),bi(t),f(t,x,y),i = 1,2 – заданные функции, с начальными условиями
u(0, x, y) = u0(x, y), (x, y) ∈ R2. (3.2)

Считаем, что выполнены условие переопределения
u(t, x0, y0) = φ(t), x0 = const, y0 = const, и условие согласования
(3.3)
12
φ(0) = u0(x0, y0).
Под решением задачи (3.1)-(3.4) понимается пара функций u(t, x, y), g(t), при-
надлежащая классу
1,p ∂ Zp(T)={u(t,x,y),g(t)|u(t,x,y)∈C (Π[0,T]), ∂tu(t,x,y) +

+ |Dαu(t,x,y)| ≤ K,(t,x,y) ∈ Π[0,T],g(t) ∈ C([0,T])}, p ≥ 2 ∈ Z,
|α|≤p
где C1,p(Π[0,T]) = {u(t,x,y)|∂u,Dαu(t,x,y) ∈ C(Π[0,T]),|α| ≤ p}.
∂t
ВобластиQT ={(t,x,y)|0 0 рассматривается краевая задача
ut(t,x,y)=μ1(t)uxx +μ2(t)uyy +b1(t)uux +g(t)f(t,x,y), u(0, x, y) = u0(x, y), (x, y) ∈ [0, l1] × [0, l2],
u(t,0,y) = u(t,l1,y) = 0, uy(t, x, 0) = uy(t, x, l2) = 0,
(3.6) (3.7) (3.8) (3.9)
(3.10)
u(t, x0, y0) = φ(t), (x0, y0) ∈ Ω = (0, l1) × (0, l2).
Уравнение (3.6) получено из уравнения (3.1) при a1(t) = a2(t) = b2(t) = 0.
В данной главе доказаны теоремы:
Теорема 3.1. При выполнении условий
u0(x,y) ∈ Cp+2(R2), f(t,x,y) ∈ C0,p+2(Π[0,T]), μi ∈ C([0,T]), ai ∈ C([0,T]), bi ∈ C([0,T]), φ(t) ∈ C1([0,T])
|Dαu0(x,y)|+ |Dαf(t,x,y)|+|μi(t)|+|ai(t)|+|bi(t)|+ |α|≤p+2 |α|≤p+2
(3.5)
+|φ(t)|+|φ′(t)|≤K, |f(t,x0,y0)|≥K1, i=1,2, K=const>0, p≥4,
(3.4)

∂mu0(x,l2) = ∂mf(t,x,0) = ∂mf(t,x,l2) = 0, ∂ym ∂ym ∂ym
13
существует единственное решение задачи (3.11)-(3.14) в классе Zp(t∗), где t∗ > 0 – некоторая постоянная, зависящая от входных даных.
Теорема 3.2. Пусть функции u0(x, y), f (t, x, y), μ1(t), μ2(t), b1(t) удовлетворя- ют условиям Теоремы 3.1 при (x, y) ∈ Ω ̄ и p = 6. При выполнении условий
∂ku0(0,y) = ∂xk
∂mu0(x,0) = ∂ym
∂ku0(l1,y) = ∂kf(t,0,y) = ∂kf(t,l1,y) = 0, k = 0,2,4,6,8, ∂xk ∂xk ∂xk
m = 1,3,5,7
|α|≤6
В четвёртой главе рассмотрена задача Коши для системы нагруженных
[23] (содержащих следы неизвестных функций и их производных) уравнений.
существует единственное решение задачи (3.6)-(3.10) в классе
1 , 6 ∂ (Qt∗), ∂tu(t,x,y) +
W ={u(t,x,y),g(t)|u(t,x,y)∈C
+ |Dαu(t,x,y)| ≤ K,(t,x,y) ∈ Qt∗,g(t) ∈ C([0,t∗])}.
∂u ̄
∂t =μ(t,ω ̄(t))∆u ̄+ν(u ̄·∇)u ̄+f(t,x,u ̄,ω ̄(t)), (4.1)

̄
u ̄(0, x) = φ ̄(x), (4.2)
где 0 ≤ t ≤ T, x ∈ Rn, u ̄ = u1(t,x),…,un(t,x) – неизвестные функции, μ(t,ω ̄(t)), f ̄= f1,…,fn), φ ̄ = φ1(x),…,φn(x) – заданные функции, ν ∈ R – заданныйкоэффициент.Черезω ̄(t)= ui(t,xj),Dαui(t,xj) ; i=1,…,n; j= 1,…,r; |α| = 0,…,p0 обозначена вектор-функция, компонентами которой являются следы неизвестных функций и их производных по пространственным переменным до порядка p0 включительно, взятые в точках x1, . . . , xr ∈ Rn.
К системе такого типа сводятся некоторые коэффициентные обратные задачи для параболических уравнений и систем. Для рассмотренной задачи доказана теорема разрешимости. Приведён пример коэффициентной обратной задачи, приводящейся к рассматриваемой системе уравнений, и указан способ проверки условий теоремы разрешимости.

|f(t,y,y)| ≥ K1 > 0, α β
y ∈ D,
α βf(t,x,y)
β Dyφt(t,y) ≤K4,
DxDyu0(x,y) ≤K2,
|α|≤p, |β|≤1,(t,x,y)∈QT, p≥6;
(5.5)
14
Основное содержание четвёртой главы опубликовано в работе [73].
В пятой главе рассмотрена краевая обратная задача для n-мерного па- раболического уравнения с параметром
∂u(t,x,y) =λ∆xu(t,x,y)+μ(t,y)f(t,x,y), ∂t
u(0, x, y) = u0(x, y), u(t,x,y)|x∈∂Ω =0, u(t,x,y)|x=y =φ(t,y), (t,x,y)∈QT,
QT ={(t,x,y)|t∈[0,T], x∈Ω, y∈D},
(5.1)
(5.2) (5.3) (5.4)
где
T > 0, Ω – прямоугольный параллелепипед [0,l1] × [0,l2] × ··· × [0,ln] в Rn,
D – компактное подмножество Ω с достаточно гладкой границей ∂D, ∆x =
n ∂2 – оператор Лапласа, u(t, x, y) и μ(t, y) – неизвестные функции; функ- i=1 ∂x2i
ции f (t, x, y), u0(x, y) заданы.
Для данной задачи получены следующие результаты:
Теорема 5.1. Пусть входные данные задачи (5.1)–(5.4) удовлетворяют усло- виям
DxDy f(t,y,y) ≤K3,
∂k
∂xku0(x1,…,xi,…,xn,y)|xi=0,xi=li = 0,
i ∂k
∂xkf(t,x1,…,xi,…,xn,y)|xi=0,xi=li = 0, i = 1,…,n, k = 0,2,4,6. i
Тогда задача (5.1)–(5.4) имеет решение класса.
Zp(Ω) = {(u(t, x, y), μ(t, y)) |Dxαu(t, x, y) ∈ C([0, T ] × Ω × D), |Dxαu(t,x,y)|≤K, μ(t,y)∈C([0,T]×D), |α|≤p−2}−

15
Теорема 5.2. Решение задачи (5.1)–(5.4) класса Zp(Ω) единственно. Теорема 5.3. Рассмотрим задачу Коши (5.1), (5.2), (5.4) в полосе
E = {(t,x,y)|t ∈ [0,T],x ∈ Rn,y ∈ D}.
а) Задача (5.1), (5.2), (5.4) имеет решение класса Zp(Rn), если условия (5.5) выполняются в E.
б) Решение задачи (5.1), (5.2), (5.4) единственно.
Полученные результаты опубликованы в работе [74].

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы
    Анна Н. Государственный университет управления 2021, Экономика и ...
    0 (13 отзывов)
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уни... Читать все
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уникальности с нуля. Все работы оформляю в соответствии с ГОСТ.
    #Кандидатские #Магистерские
    0 Выполненных работ
    user1250010 Омский государственный университет, 2010, преподаватель,...
    4 (15 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    21 Выполненная работа
    Александр Р. ВоГТУ 2003, Экономический, преподаватель, кандидат наук
    4.5 (80 отзывов)
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфин... Читать все
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфинансы (Казначейство). Работаю в финансовой сфере более 10 лет. Банки,риски
    #Кандидатские #Магистерские
    123 Выполненных работы
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ
    Антон П. преподаватель, доцент
    4.8 (1033 отзыва)
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публик... Читать все
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публикуюсь, имею высокий индекс цитирования. Спикер.
    #Кандидатские #Магистерские
    1386 Выполненных работ
    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ

    Последние выполненные заказы

    Другие учебные работы по предмету