Новые N,S(Se)-гетероацены на основе тиено3,2-bтиофена и его селенсодержащих аналогов: синтез и свойства : диссертация на соискание ученой степени кандидата химических наук : 1.4.3
Введение ………………………………………………………………………………………………………………………..4
Глава 1. Построение конденсированных систем на основе аннелированных халькогенофенов (Литературный обзор)………………………………………………………………………….8
1.1 Синтез соединений с тиено[3,2-b]тиофеновым каркасом ……………………………………………9 1.1.1 Синтез тиено[3,2-b]тиофенового фрагмента путём аннелирования тиофенового
1.2.3 Аннелирование тиофенового кольца к тиено[3,2-b]тиофеновому каркасу………..26 1.3 Синтез линейных тиеноаценов и других гетероаценов с тиено[3,2-b]тиофеновым
фрагментом ………………………………………………………………………………………………………………….27 1.3.1 Синтез тиеноаценов с четырьмя и более конденсированными тиофенами ……….28 1.3.2 Синтез N,S-гетероаценов с тиено[3,2-b]тиофеновым фрагментом ……………………30
Глава 2. Результаты и обсуждения ………………………………………………………………………………..35 2.1 Построение тиено[3,2-b]тиофенового фрагмента и его селенсодержащих аналогов…..35 2.1.1 Синтез исходных соединений …………………………………………………………………………35 2.1.2 Аннелирование тиофенового кольца под действием тиогликолятов…………………38
2.1.3 Аннелирование халькогенофенового кольца с использованием халькогенидов натрия и алкилирующих агентов …………………………………………………………………………….40
2.1.3.1 Аннелирование тиофенового кольца при помощи сульфида натрия………..40
3
2.1.3.2 Аннелирование селенофенового кольца при помощи селенида натрия……43
2.2 Дальнейшая модификация соединений с тиено[3,2-b]тиофеновым и селенофено[3,2-b]- тиофеновым каркасами и синтез поликонденсированных структур на их основе ……………45
2.2.1 Синтез 2-формилзамещенных производных бензо[b]тиено[2,3-d]тиофенов……..45 2.2.2 .. Синтез производных тиено- и селенофено[3,2-b]тиофен-3(2H)-онов и получение
N,S(Se)-гетероаценов на их основе………………………………………………………………………….45 2.2.2.1 Синтез арилзамещённых и бензаннелированных тиофен-3(2H)-онов………45
2.2.2.2 Синтез гетероаценов на основе тиено- и селенофено[2′,3′:4,5]тиено[3,2-b]- индолов……………………………………………………………………………………………………………47
2.2.2.3 Синтез гетероаценов на основе бензо[b]тиено[2,3-d]тиофенового / бензо[4,5]селенофено[3,2-b]тиофенового и хинолинового / 1,8-нафтиридинового ядер …………………………………………………………………………………………………………………50
2.2.3 Аннелирование дополнительного тиофенового кольца и получение гетероаценов с тремя конденсированными халькогенофенами ……………………………………………………..53
2.2.3.1 Синтез производных с бензо[4,5]селенофено[3,2-b]тиено[2,3-d]тиофеновым ядром и N,S,Se-гетероаценов на их основе………………………………………………………..53
2.2.3.2 Синтез производных с бензо[4′,5′]тиено[2′,3′:4,5]тиено[3,2-b]тиофеновым ядром и N,S-гетероаценов на их основе…………………………………………………………….54
2.3 Физико-химические характеристики тонких плёнок некоторых полученных соединений ………………………………………………………………………………………………………………….57
Глава 3. Экспериментальная часть ………………………………………………………………………………..68 Заключение…………………………………………………………………………………………………………………125 Список сокращений и условных обозначений ……………………………………………………………..126 Список литературы……………………………………………………………………………………………………..128
Актуальность и степень разработанности темы исследования. Современный мир невозможно представить без электронных устройств. В настоящее время предпочтение при их производстве, безусловно, отдаётся кремниевым технологиям. Однако, все активнее ведутся поиски принципиально новых материалов на основе органических соединений, способных ключевым образом помочь в решении актуальных задач, стоящих перед стремительно развивающейся электронной промышленностью.
Органическая электроника заняла лидирующее место среди передовых многообещающих технологий благодаря ряду отличительных особенностей: во-первых, она обладает свойствами механической гибкости или даже растяжимости, что позволяет интегрировать её в объекты, характеризующиеся нетрадиционными форм-факторами; во- вторых, для производства органической электроники могут быть использованы методы нанесения из растворов, что делает возможным единовременное производство устройств большой площади и значительно снижает стоимость производства; в-третьих, некоторые группы органических материалов являются биосовместимыми, что обеспечивает высокую степень интеграции электроники и биологии [1–10].
В связи с бурным развитием органической электроники потребность как в эффективных материалах, так и в простых, удобных и экономически выгодных способах их синтеза растёт год от года. Особенно востребованными являются соединения, содержащие в своём составе халькогеновые атомы, такие как тиено[3,2-b]тиофен (ТТ) или его селенофеновые аналоги [11]. В частности, ТТ-фрагмент является структурным элементом различных тиеноаценов и N,S-содержащих поликонденсированных систем (N,S- гетероаценов), нашедших широкое применение в качестве зарядотранспортных слоёв в органических полевых транзисторах и солнечных батареях [12–14].
Тем не менее, поиск рациональных методов получения материалов с заданными физическими свойствами на основе конденсированных тиофенов и их производных, а также новых структур на их основе, перспективных с точки зрения органической электроники, остается актуальным.
Цель работы – разработать метод получения N,S(Se)-гетероаценов разнообразного строения на основе тиено[3,2-b]тиофена и его селенсодержащих аналогов, а также оценить возможность их использования в качестве полупроводниковых материалов.
5
Для достижения поставленной цели необходимо было решить следующие основные задачи:
разработать способы получения функциональных производных тиено[3,2-b]- тиофена и его селенсодержащих аналогов;
создать эффективные синтетические подходы к построению поликонденсированных структур на базе тиено[3,2-b]тиофена и селенофено[3,2-b]тиофена;
изучить фотофизические и электрохимические свойства полученных N,S(Se)- гетероаценов, а также подвижность носителей зарядов в материалах на их основе.
Научная новизна работы и теоретическая значимость:
впервые разработаны не требующие катализа переходными металлами способы синтеза широкого ряда функциональных производных тиено[3,2-b]тиофена и его селенсодержащих аналогов, а также поликонденсированных систем на их основе с использованием комбинации реакций Фиссельмана, Фридлёндера и Фишера;
впервые показана возможность аннелирования селенофенового кольца на основе реакции селенида натрия с электрофильными субстратами;
осуществлён синтез трёх новых классов N,S,Se-содержащих гетероаценов: селенофено[2′,3′:4,5]тиено[3,2-b]индолов, селенофено[2′,3′:4,5]тиено[3,2-b]хинолинов и селенофено[2′,3′:4,5]тиено[3,2-b][1,8]нафтиридинов
проведена количественная оценка подвижности дырок в тонких плёнках некоторых синтезированных гетероаценов методом экстракции зарядов путём линейного увеличения напряжения (CELIV метод).
Практическая значимость работы. Синтезирован широкий ряд новых производных халькогенофено[3,2-b]халькогенофенов с различными функциональными заместителями, позволяющими производить дальнейшую модификацию полученных соединений. Разработана общая стратегия последовательного аннелирования сера-, селен- и азотсодержащих циклов, пригодная для конструирования поликонденсированных систем различного строения и включающая в себя легко масштабируемые реакции. Электрофизические характеристики некоторых полученных N,S(Se)-гетероаценов позволяют рассматривать их как перспективные полупроводниковые материалы для использования в устройствах органической электроники.
Положения, выносимые на защиту:
способы синтеза функциональных производных тиено[3,2-b]тиофена и его селенсодержащих аналогов;
модификация полученных халькогенофенов;
производных халькогенофено[3,2-b]-
6
синтетические подходы к N,S(Se)-гетероаценам разнообразного строения;
оценка перспективности использования полученных гетероаценов в качестве полупроводниковых материалов.
Личный вклад соискателя состоит в сборе и систематизации литературных данных по методам синтеза конденсированных систем на основе аннелированных халькогенофенов, постановке задач исследования, планировании и проведении химических экспериментов, анализе, интерпретации и обобщении полученных данных как в области синтетической части работы, так и в материаловедческой, а также в подготовке публикаций по результатам исследований.
Методология и методы диссертационного исследования основаны на анализе литературных данных и направленном органическом синтезе. Строение соединений подтверждено использованием комплекса методов физико-химического анализа (элементный анализ, масс-спектрометрия высокого разрешения, ИК и ЯМР 1Н, 13С, 19F спектроскопия, ГХ-МС, РСА), выполненных в ЦКП “Спектроскопия и анализ органических соединений” (ЦКП САОС) при ИОС УрО РАН.
Степень достоверности результатов обеспечена применением современных методов исследования и хорошей воспроизводимостью экспериментальных результатов. Анализ состава, структуры и чистоты полученных соединений осуществлялся на сертифицированных и поверенных приборах ЦКП САОС.
Апробация результатов диссертационной работы. Основные результаты диссертации доложены на XXIX Российской молодежной конференции с международным участием «Проблемы теоретической и экспериментальной химии» (Екатеринбург, 2019 г.), Markovnikov Congress on Organic Chemistry (Казань, 2019 г.), XXI Менделеевском съезде по общей и прикладной химии (Санкт-Петербург, 2019 г.), IV Международной конференции «Современные синтетические методологии для создания лекарственных препаратов и функциональных материалов» (MOSM 2020) (Екатеринбург, 2020 г.), Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2021» (Москва, 2021 г.), а также на Mendeleev 2021, The XII International Conference on Chemistry for Young Scientists (Санкт-Петербург, 2021).
Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках соглашения с Институтом органической химии им. Зелинского РАН No 075-15-2020-803.
7
Публикации. По теме диссертационной работы опубликованы 5 статей в рецензируемых научных журналах (Scopus, Web of Science) и тезисы 6 докладов.
Структура и объём диссертации. Диссертационная работа общим объёмом 145 страниц состоит из трёх основных глав: литературного обзора, обсуждения результатов и экспериментальной части, а также оглавления, введения, заключения, списка литературы и условных сокращений. Обзор литературы посвящен методам получения конденсированных систем на основе аннелированных халькогенофенов. Работа содержит 169 ссылок на литературные источники, 2 таблицы, 64 схемы и 14 рисунков.
Помогаем с подготовкой сопроводительных документов
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!