О спектральных свойствах операторов, ассоциированных с некоэрцитивными смешанными задачами для эллиптических систем

Пейчева, Анастасия Сергеевна

Введение 3

1 Эрмитовы формы и спектральные свойства смешанных задач 22
1.1 Функциональные пространства и операторы . . . . . . . . . . . . . . . . . 22
1.2 Теоремы вложения для функциональных
пространств, ассоциированных с эрмитовыми
формами . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3 Спектральные свойства смешанных задач . . . . . . . . . . . . . . . . . . 41
1.4 О регуляризации задачи Коши для эллиптических систем . . . . . . . . . 65

2 Задача Штурма-Лиувилля для системы Ламе в весовых пространствах
Соболева-Слободецкого 73
2.1 Задача Штурма-Лиувилля для системы Ламе . . . . . . . . . . . . . . . . 73
2.2 Спектральные свойства смешанных задач . . . . . . . . . . . . . . . . . . 89
2.3 Примеры . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3 Собственные значения задачи Зарембы для круга 96
3.1 Задача типа Зарембы для единичного диска . . . . . . . . . . . . . . . . . 96
3.2 Применение метода Фурье . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3 Применение теоремы об экспоненциальном представлении . . . . . . . . . 102

Заключение 124

Список литературы 125

Хорошо известно, что интегро-дифференциальные эрмитовы формы тесно связаны с
обобщенными постановками краевых задач для дифференциальных уравнений и си-
стем, а также с теоремами существования и единственности для таких задач (см., на-
пример, [1], [2], [8], [20], [21], [28], [52], и другие).
Однако, при изучении краевых задач важны не только теоремы существования и
единственности, но и формулы для нахождения их точных и приближенных решений.
Классический подход к изучению эллиптических уравнений в гильбертовых простран-
ствах позволяет находить решение краевых задач в (весовых) пространствах соболев-
ского типа в различных областях (гладкие области, липшицевы области, области с ко-
ническими и реберными особенностями и тд.), см., например [2], [20], [36], [39], [40], [45],
[50], [68] и многие другие. Не так давно данный подход был адаптирован к изучению
широкого класса некоэрцитивных (субэллиптических) смешанных краевых задач, см.
[30], [63].
Фактически, мы рассматриваем краевые задачи как операторные уравнения в под-
ходящих пространствах Гильберта. Конечно, всегда можно воспользоваться методом
Фаэдо-Галеркина, но дополнительная информация о полной системе функций, с по-
мощью которой строятся решения кравевых задач может существенно упростить вы-
числения. В случае уравнений с самосопряженными операторами обычно применяются
спектральные теоремы; например, теорема Гильберта-Шмидта (см. [9] или в [14, стр.
246]), гарантирующая полноту ортогональной системы собственных векторов самосо-
пряженного компактного оператора, а значит, и возможность построения точных и
приближенных решений операторных уравнений. Поэтому одной из целей будет на-
хождение соответствующих собственных значений и построение собственных функций
краевых задач.
В случае уравнений с несамосопряженными операторами все еще можно использо-
вать концепцию корневых элементов линейного оператора, но для этого опять требуется
доказать полноту системы корневых функций. Это замечание справедливо и в том слу-
чае, если для нахождения решений операторных уравнений используются численные
методы. В таком случае спектральная теория будет полезным инструментом для реше-
ния краевых задач для дифференциальных операторов с частными производными (см.,
например, [9], [12], [44]).
Классическим примером применения спектральной теории для решения систем ли-
нейных алгебраических уравнений является теорема о приведении матрицы самосо-
пряженного преобразования конечномерного пространства к диагональному виду (см.,
например, [9] или [17]). Для несамосопряженных преобразований конечномерного про-
странства плодотворным оказалось понятие корневого вектора преобразования. Ис-
пользование корневых векторов при решении систем алгебраических уравнений требует
доказательства полноты линейной оболочки этих векторов, что эквивалентно возмож-
ности приведения матрицы системы к нормальной жордановой форме.
По-видимому, впервые разложение по корневым векторам несамосопряженных опе-
раторов в пространствах Гильберта обосновал Келдыш [12]. Им была доказана полнота
системы корневых векторов слабых возмущений компактных самосопряженных опе-
раторов, а соответствующие результаты использованы при изучении задачи Дирихле
для слабо возмущенного оператора Лапласа. Применительно к общей теории краевых
задач, результаты такого типа хорошо известны для коэрцитивных (эллиптических)
задач в областях с гладкими границами (см. [36], [40]). Относительно спектральной

В диссертации были рассмотрены и решены следующие вопросы:

1. Доказаны теоремы вложения для (весовых) пространств соболевского типа, по-
рожденных некоэрцитивными (и коэрцитивными) эрмитовыми формами, в шкалу
пространств Соболева-Слободецкого. Как следствие, описаны условия разреши-
мости и фредгольмовости для широкого класса соответствующих этим формам
смешанных задач, а также доказаны теоремы о полноте их корневых функций.

2. В весовых пространствах соболевского типа получены условия разрешимости и
фредгольмовости для трех задач Штурма-Лиувилля (двух коэрцитивных и одной
некоэрцитивной) для возмущенного оператора Ламе в Rn с граничными условиями
робеновского типа, а также доказаны теоремы о полноте соответствующих систем
корневых функций.

3. Указан один способ нахождения собственных значений некоэрцитивной задачи ти-
па Зарембы для оператора Лапласа в единичном круге на комплексной плоскости
и построения ее собственных функций.

4. Получены условия разрешимости некорректной задачи Коши для матричного эл-
липтического дифференциального оператора первого порядка A, а также найдены
формулы точных и приближенных решений для данной задачи.

[1] М.С. Агранович, Смешанные задачи в липшицевой области для сильно эллипти-
ческих систем 2-го порядка, Функ. анализ и его прил., 45(2011), №. 2, 1-22.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Александр Р. ВоГТУ 2003, Экономический, преподаватель, кандидат наук
    4.5 (80 отзывов)
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфин... Читать все
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфинансы (Казначейство). Работаю в финансовой сфере более 10 лет. Банки,риски
    #Кандидатские #Магистерские
    123 Выполненных работы
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    Ксения М. Курганский Государственный Университет 2009, Юридический...
    4.8 (105 отзывов)
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитыв... Читать все
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитывать все требования и пожелания.
    #Кандидатские #Магистерские
    213 Выполненных работ

    Другие учебные работы по предмету

    Многомерные периодические системы всплесков
    📅 2021год
    🏢 ФГБУН Санкт-Петербургское отделение Математического института им. В.А. Стеклова Российской академии наук
    Два сюжета из гармонического анализа: квадратичные функции и задача об изоморфизме
    📅 2021год
    🏢 ФГБУН Санкт-Петербургское отделение Математического института им. В.А. Стеклова Российской академии наук