О спектральных свойствах операторов, порожденных некоэрцитивными эрмитовыми формами

Полковников, Александр Николаевич

Введение 4

1 Предварительные сведения 19
1.1 Краевые задачи для сильно эллиптических операторов . . . 22
1.2 Элементы спектральной теории несамосопряженных опера-
торов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Об одном классе операторных уравнений, порожденных
эрмитовыми формами 29
2.1 Теорема вложения для функциональных пространств, по-
рожденных эрмитовыми формами . . . . . . . . . . . . . . . 29
2.2 Смешанные краевые задачи для сильно эллиптических опе-
раторов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Фредгольмовы семейства операторных уравнений . . . . . . 54

3 Спектральные свойства операторов, порожденных эрмито-
выми формами 67
3.1 Смешанные задачи, соответствующие компактным возмуще-
ниям самосопряженных фредгольмовых операторов . . . . . 67
3.2 Спектральные свойства смешанных краевых задач для эл-
липтического с параметром оператора . . . . . . . . . . . . . 73

4 Применения и примеры 84
4.1 О некорректной задаче Коши для оператора Коши-Римана 84
4.2 Смешанные задачи в шаре . . . . . . . . . . . . . . . . . . . 103

Заключение 115
Список литературы 116

Теория смешанных краевых задач для эллиптических дифференциальных
операторов второго порядка активно развивалась в течение всего послед-
него столетия. Различные варианты таких задач рассматривались многими
математиками с начала XX века. Так, еще в 1910 году С. Заремба в своей
работе [69] описал условия разрешимости смешанной задачи для операто-
ра Лапласа в области с гладкой границей и непрерывными начальными
данными Неймана и Дирихле на разных кусках границы.
Бурное развитие теории эллиптических задач пришлось на начало вто-
рой половины XX века, чему способствовали работы таких математиков
как С. Агмон, А. Дуглис и Л. Ниренберг [1], Ж.-Л. Лионс и Э. Мадженис
[19], Ф. Браудер [36], С. Кампанато [37] и многие другие. Существенную
роль в развитии краевых задач в целом и эллиптических задач в частно-
сти сыграли работы М.С. Соболева, Л.Н. Слободецкого, О.А. Ладыжен-
ской, Н.Н. Уральцевой и других известных ученых.
Одним из результатов явилось то, что, как оказалось, в случае, когда
граница области является гладкой и выполнено условие коэрцитивности
(см. (1.12) ниже), то фредгольмовость задачи эквивалентна так называе-
мому условию Шапиро – Лопатинского (см., например, [28] или [20]). Одна-
ко, в случае негладкой границы необходимо более детальное исследование
проблемы.
Отметим, что при решении смешанных задач чаще всего пользуются
либо методом потенциалов, либо методом эрмитовых форм и слабых ре-
шений. Идя вторым путем, на соответствующую эрмитову форму часто
накладывают условие коэрцитивности, которое автоматически позволяет
получить достаточно гладкое решение задачи вплоть до границы области,
где ищется решение, если данные задачи также являются достаточно глад-
кими.
Однако, Ж. Кон в своей работе [50] при изучении ∂-задачи Неймана
столкнулся с феноменом так называемой субэллиптичности. Именно, в этой
задаче, при выполнении условия сильной эллиптичности, происходит по-
теря гладкости решения вблизи границы. Тем не менее, Ж. Кону удалось
доказать фредгольмовость задачи на шкале пространств соболевского типа
в псевдо-выпуклых областях с гладкой границей.
В настоящей работе рассматриваются операторные уравнения, порож-
денные некоэрцитивными эрмитовыми формами, соответствующими неко-
эрцитивным смешанным краевым задачам с граничными условиями ро-
беновского типа для сильно эллиптических дифференциальных операто-
ров в произвольных областях с липшицевой границей. При этом, вместо
условий на геометрические свойства области мы накладываем некоторые
ограничения на граничные операторы, более слабые, чем условия Шапиро-
Лопатинского.
Наряду с этим мы также рассматриваем некоэрцитивные эрмитовы
формы, соответствующие смешанным задачам для эллиптических с пара-
метром операторов. Мотивацией для изучения таких задач является тот
факт, что, использование преобразования Фурье по параметру выявляет
тесную связь между эллиптическими с параметром задачами и начально
краевыми задачами для параболических уравнений, см., например, работу
М.С. Аграновича и М.И. Вишика [2], где рассмотрена задача с постоян-
ными комплексными коэффициентами в области с гладкой границей при
выполнении условия Шапиро-Лопатинского с параметром и доказана од-
нозначная разрешимость этой задачи при достаточно больших по модулю
значениях параметра.
Дальнейшее развитие теории эллиптических с параметром краевых за-
дач можно наблюдать в работах таких математиков как Р. Денк и Л. Во-
левич [39], А.С. Маркус [53], Б.В. Пальцев [54], Н.Н. Тарханов и А.А. Шла-
пунов [60] и многих других. В настоящей работе рассматривается неко-
эрцитивная задача для эллиптического с параметром дифференциального
оператора второго порядка. Мы также доказываем однозначную разреши-
мость таких задач при достаточно больших по модулю значениях парамет-
ра, позволяя при этом “слабо” меняться аргументу функции, содержащую
этот параметр.
Таким образом, ослабляя условия на граничные дифференциальные
операторы, мы, тем не менее, доказываем фредгольмовость соответству-
ющих операторных уравнений в специальных пространствах соболевского
типа (с некоторой потерей гладкости, по сравнению с классическим ре-
зультатами теории смешанных краевых задач), и при этом не накладывая
ограничений на геометрические свойства области. Наряду с теорией разре-
шимости операторных уравнений, порожденных некоэрцитивными эрмито-
выми формами, мы также изучаем их спектральные свойства и доказываем
полноту корневых векторов соответствующих операторов в рассматривае-
мых пространствах.
Цель диссертационной работы – найти подходящие функциональ-
ные пространства для решения некоэрцитивных смешанных задач, отыс-
кать условия разрешимости соответствующих операторных уравнений и
доказать полноту систем их корневых векторов.
Основные результаты работы:
1. Доказана теорема вложения в шкалу пространств Соболева-Слобо-
децкого для пространств соболевского типа, порожденных некоэрцитивны-

Перечислим основные результаты диссертационной работы:

1. Описаны пространства соболевского типа, порожденные некоэрци-
тивными эрмитовыми формами. Доказана теорема вложения для
этих пространств в пространства Соболева-Слободецкого.

2. Изучены условия разрешимости некоэрцитивных смешанных задач
в пространствах, порожденных соответствующими эрмитовыми фор-
мами. Доказаны теоремы об однозначной разрешимости и фредголь-
мовости для данных задач.

3. Описаны спектральные свойства операторов, индуцированных неко-
эрцитивными эрмитовыми формами. Получены критерии полноты
корневых функций в рассматриваемых пространствах.

4. Построены формулы Карлемана для некорректной задачи Коши для
оператора Коши-Римана в плоских областях, описаны условия ее раз-
решимости в специальных пространствах, порожденных подходящи-
ми некоэрцитивными формами.

Изложенные результаты имеют теоретический характер и могут быть
использованы специалистами, работающими в различных областях анализа
и дифференциальных уравнений.

[1] Агмон, С. Оценки решений эллиптических уравнений вблизи границы
/ С. Агмон, А. Дуглис, Л. Ниренберг // М.: Издательство иностран-
ной литературы, 1962.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Вики Р.
    5 (44 отзыва)
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написан... Читать все
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написание письменных работ для меня в удовольствие.Всегда качественно.
    #Кандидатские #Магистерские
    60 Выполненных работ
    Александр Р. ВоГТУ 2003, Экономический, преподаватель, кандидат наук
    4.5 (80 отзывов)
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфин... Читать все
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфинансы (Казначейство). Работаю в финансовой сфере более 10 лет. Банки,риски
    #Кандидатские #Магистерские
    123 Выполненных работы
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Татьяна П.
    4.2 (6 отзывов)
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки ... Читать все
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки в одном из крупнейших университетов Германии.
    #Кандидатские #Магистерские
    9 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы

    Другие учебные работы по предмету

    Многомерные периодические системы всплесков
    📅 2021год
    🏢 ФГБУН Санкт-Петербургское отделение Математического института им. В.А. Стеклова Российской академии наук
    Два сюжета из гармонического анализа: квадратичные функции и задача об изоморфизме
    📅 2021год
    🏢 ФГБУН Санкт-Петербургское отделение Математического института им. В.А. Стеклова Российской академии наук