Плазмодинамический синтез дисперсных оксидов железа с высоким содержанием эпсилон фазы в высокоскоростной струе электроразрядной плазмы

Шаненков, Иван Игоревич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

ВВЕДЕНИЕ………………………………………………………………………………………………. 4
ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР …………………………………………………….. 9
1.1 Введение в проблему изучения оксидов железа и эпсилон фазы ……………. 9
1.2 Основные этапы исследований ε-Fe2O3 и перспективы развития ………….. 11
1.3 Основные способы синтеза фазы ε-Fe2O3 …………………………………………….. 15
1.4 Магнитные, магнитоэлектрические свойства и ферримагнитный резонанс
ε-Fe2O3……………………………………………………………………………………………………… 20
1.5 Выводы по обзору ………………………………………………………………………………. 23
ГЛАВА 2. МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ ……………….. 25
2.1 Экспериментальная высоковольтная установка для реализации
плазмодинамического синтеза ………………………………………………………………….. 25
2.2 Устройство и принцип действия КМПУ с железными электродами …….. 27
2.3 Методики оценки влияния параметров системы ПДС на характеристики
синтезируемых продуктов ………………………………………………………………………… 31
2.3.1 Изменение концентрации кислорода в КР ………………………………………… 31
2.3.2 Изменение энергетических параметров процесса ПДС ……………………… 32
2.3.3 Изменение длительности импульса электропитания …………………………. 32
2.3.4 Метод отсечки «хвостовой» части импульса тока …………………………….. 35
2.4 Сепарация дисперсных продуктов ПДС ………………………………………………. 36
2.4.1 Фракционное разделение в изопропиловом спирте …………………………… 37
2.4.2 Дифференциально-барическая сепарация …………………………………………. 37
2.5 Подготовка композитных образцов на основе порошков оксида железа
для измерения спектров поглощения электромагнитного излучения …………. 39
2.6 Методики аналитических исследований продуктов ПДС …………………….. 41
ГЛАВА 3. ВЛИЯНИЕ ПАРАМЕТРОВ СИСТЕМЫ НА
ХАРАКТЕРИСТИКИ ПРОДУКТОВ ПДС…………………………………………….. 42
3.1 Влияние энергетических параметров процесса на продукты ПДС ……….. 42
3.2 Влияние концентрации кислорода на фазовый состав и структуру
продуктов ПДС ………………………………………………………………………………………… 64
3.3 Влияние длительности импульса электропитания на характеристики
продуктов ПДС ………………………………………………………………………………………… 73
3.4 Предварительная сепарация продуктов ПДС дифференциально-
барическим методом ………………………………………………………………………………… 86
3.5 Исследование частотного режима работы КМПУ …………………………….. 91
3.6 Выводы по главе ……………………………………………………………………………… 99
ГЛАВА 4. ИССЛЕДОВАНИЯ ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТИ
СИНТЕЗИРУЕМЫХ ОКСИДОВ ЖЕЛЕЗА ………………………………………… 101
ГЛАВА 5. ИССЛЕДОВАНИЯ СВОЙСТВ ПОГЛОЩЕНИЯ
ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СИНТЕЗИРУЕМЫМИ
ОКСИДАМИ ЖЕЛЕЗА ………………………………………………………………………… 122
5.1 Исследования абсорбционных свойств полых сферических частиц
магнетита Fe3O4 ……………………………………………………………………………………… 122
5.1.1 Получение и пробоподготовка образцов …………………………………………. 123
5.1.2 Теоретические основы процессов поглощения ЭМИ ………………………. 126
5.1.3 Результаты измерений спектров потерь на отражение …………………….. 128
5.2 Исследования абсорбционных свойств ультрадисперсной фракции с
преимущественным содержанием частиц эпсилон фазы ε-Fe2O3 ……………… 134
ЗАКЛЮЧЕНИЕ ……………………………………………………………………………………. 137
СПИСОК ЛИТЕРАТУРЫ ……………………………………………………………………. 139
ПРИЛОЖЕНИЯ …………………………………………………………………………………… 154

Актуальность работы. Электрофизические методы обработки, синтеза
и получения в высокодисперсном состоянии металлов и их соединений,
такие как искровые, дуговые, СВЧ-методы, пучково-плазменные,
плазмохимические, электровзрывные и т.п., успешно развиваются в течение
нескольких десятилетий. К их числу относится и плазмодинамический метод
на основе сильноточного высоковольтного коаксиального
магнитоплазменного ускорителя (КМПУ) эрозионного типа. Ускоритель
генерирует импульсную сверхзвуковую струю электроразрядной плазмы, в
которой происходит синтез и формирование высокодисперсных частиц
материалов. Отличительной особенностью и преимуществом метода является
то, что он реализуется при напряжении 1-5 кВ за короткое время порядка
10-3 с и не требует использования высокого вакуума и давления. Скорость
плазменного потока более 3 км/с обеспечивает высокую скорость
распыления и кристаллизации материалов, что позволяет получать
различные металлы и их соединения в нанодисперсном состоянии. Эти же
преимущества позволяют синтезировать уникальные метастабильные фазы, к
которым можно отнести эпсилон фазу оксида железа ε-Fe2O3.
Большое внимание, уделяемое в последние 25 лет разработке методов
синтеза этой модификации оксида железа, обусловлено рядом ее
особенностей: 1) наибольшим значением коэрцитивной силы при комнатной
температуре (~28 кЭ) среди всех известных простых оксидов металлов;
2) значительным ферромагнитным резонансом в миллиметровом диапазоне
длин волн; 3) магнитоэлектрическими особенностями, которые не
наблюдаются у других фаз простых оксидов металлов. Несмотря на то, что
первые упоминания о данной фазе датируются 1930-ми годами, на
сегодняшний день в мире насчитывается около 100 публикаций, авторы
которых заявляют о реализации синтеза ε-Fe2O3 преимущественно золь-гель
методом (80% всех опубликованных работ). Этот метод, помимо известных
достоинств, характеризуется большими временными затратами, малым
выходом продукта и необходимостью последующей очистки от защитной
матрицы из SiO2, предназначенной для подавления роста кристаллов и
фазовых переходов. Известно, что эпсилон фаза оксида железа может
существовать только в наноразмерном состоянии при размерах кристаллитов
менее 100 нм и переходит в гематит (α-Fe2O3) при температурах 700-800 °С.
Эти особенности, как отмечается в литературе [1-4], являются основными
препятствиями синтеза другими традиционными методами. Они же не
позволяют достичь высокого выхода ε-Fe2O3 при использовании
электрофизических методов на основе мощных высоковольтных источников
и стационарных высокочастотных, искровых и дуговых разрядов из-за
высоких температур в зоне реакции.

В соответствии с целью и задачами диссертационной работы
проведены экспериментальные исследования и разработаны научно-
технические основы метода синтеза и получения дисперсных оксидов железа
с высоким содержанием эпсилон фазы в сверхзвуковой струе
железосодержащей электроразрядной плазмы, генерируемой
высоковольтным сильноточным коаксиальным магнитоплазменным
ускорителем. В ходе выполнения работы получены следующие результаты:
1. Разработана система на основе импульсного высоковольтного
сильноточного коаксиального магнитоплазменного ускорителя с железными
электродами, обеспечивающая реализацию прямого плазмодинамического
синтеза и получение гетерофазного продукта, состоящего из уникальной
нанокристаллической фазы ε-Fe2O3, магнетита Fe3O4 и гематита α-Fe2O3.
2. Разработаны схемные решения и установлены основные
закономерности влияния режимных и энергетических параметров
импульсного электропитания КМПУ на фазовый и гранулометрический
состав продукта синтеза.
3. Определены граничные условия и параметры системы (зарядная
энергия – не менее 60 кДж, емкость накопителя – не менее 14,4 мФ,
концентрация кислорода – не менее 80% при давлении 105 Па),
обеспечивающие получение порошкообразных продуктов с
преимущественным содержанием эпсилон фазы оксида железа (более
50 масс. %). Выход фазы ε-Fe2O3 более 90 масс. % обеспечивается
применением метода дифференциально-барической сепарации либо при
введении в цепь разряда дополнительной индуктивности, либо при
реализации «частотного» режима работы КМПУ.
4. Продукты плазмодинамического синтеза в виде полых
сферических объектов могут быть использованы при изготовлении
радиопоглощающих покрытий. Установлено, что гранулометрический состав
частиц синтезированного порошка непосредственно влияет на положение
максимума поглощения электромагнитного излучения. Полые сферические
частицы с широким распределением по размерам, характеризуется зоной
эффективного поглощения (менее -10 дБ), шириной около 12 ГГц.
Ультрадисперсная фракция с преобладанием ε-Fe2O3 имеет максимум
поглощения на частоте 130 ГГц.
5. Установлено, что фазовый состав продуктов
плазмодинамического синтеза стабилен в температурном ходе до 500 °С,
после чего начинаются фазовые превращения магнетита Fe3O4 и при 700 °С
фазы ε-Fe2O3 в гематит α-Fe2O3. Благодаря уникальному полому
сферическому строению частиц в структуре оболочки удается сохранять
магнетит до 900 °С.

Автор выражает признательность и благодарность своему научному
руководителю проф. ОЭЭ ИШЭ ТПУ, д.т.н. Александру Анатольевичу
Сивкову.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    Кирилл Ч. ИНЖЭКОН 2010, экономика и управление на предприятии транс...
    4.9 (343 отзыва)
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). С... Читать все
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). Сейчас пишу диссертацию на соискание степени кандидата экономических наук.
    #Кандидатские #Магистерские
    692 Выполненных работы
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы

    Другие учебные работы по предмету