Продолжимость степенных рядов посредством аналитических интерполяций коэффициентов
ВВЕДЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
ГЛАВА 1. АНАЛИТИЧЕСКОЕ ПРОДОЛЖЕНИЕ ОДНОМЕРНЫХ СТЕ-
ПЕННЫХ РЯДОВ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1 Продолжение путем мероморфных интерполяций коэффициентов 15
1.1.1 Условия продолжимости в сектор . . . . . . . . . . . . . . 16
1.1.2 Условия продолжимости в некоторую окрестность дуги . 23
1.1.3 Условия продолжимости на всю комплексную плоскость
кроме некоторой дуги . . . . . . . . . . . . . . . . . . . . . 25
1.2 Примеры . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3 О непродолжимости одномерных рядов . . . . . . . . . . . . . . . 30
ГЛАВА 2. АНАЛИТИЧЕСКИЕ ПРОДОЛЖЕНИЕ КРАТНЫХ СТЕПЕН-
НЫХ РЯДОВ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1 Критерий продолжимости кратного ряда через семейство полидуг 36
2.1.1 Формулировка основного результата . . . . . . . . . . . . . 37
2.1.2 Необходимость условия Теоремы 2.1 . . . . . . . . . . . . 39
2.1.3 Достаточность условия Теоремы 2.1 . . . . . . . . . . . . 46
2.2 Условия продолжимости кратного ряда в секториальную область 51
2.3 Пример . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4 О непродолжимости кратных степенных рядов . . . . . . . . . . . 61
ЗАКЛЮЧЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
ПРИЛОЖЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
П.1 Индикатор роста целой функции . . . . . . . . . . . . . . . . . . 66
П.2 Многомерные вычеты и аналог леммы Жордана . . . . . . . . . . 69
СПИСОК ЛИТЕРАТУРЫ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Аналитические функции играют важную роль в математике и различных
науках точного естествознания, в частности, при моделировании многих физи-
ческих процессов, при разработке методов работы с данными и обработке циф-
ровых сигналов. Они составляют пласт математики, лежащий на стыке между
точными вычислениями и приближенными. Один из способов идентификации
аналитической функции основан на разложении ее в степенной ряд (подход
Вейерштрасса). На языке коэффициентов ряда можно описывать свойства ана-
литической функции, важнейшим из которых является свойство аналитической
продолжимости ряда за пределы его области сходимости. Такая проблематика
аналитического продолжения, а также описания связей между особенностями
степенных рядов и их коэффициентами активно исследовалась в прошлом сто-
летии в работах Адамара [1], Линделефа [2], Полиа [3], Сеге [4], Карлсона [5] и
многих других известных математиков (см. список литературы в книге Бибер-
баха [6]).
Наиболее эффективные и завершенные результаты были получены для
простых (одномерных) рядов, у которых коэффициенты ряда интерполируются
значениями ϕ(k) целой функции ϕ(z) на множестве натуральных чисел: k ∈ N
(см., например, [7], [8], [9]). Согласно лемме Абеля область сходимости одно-
мерного ряда – круговая, поэтому речь о продолжимости суммы степенного
ряда за пределы области сходимости можно вести на языке граничной дуги,
через которую возможно продолжение. Такая дуга называется дугой регулярно-
сти. Описание открытой дуги регулярности было сделано в статьях Аракеляна
[10], [11]. В терминах индикатрисы роста интерполирующей целой функции им
дан критерий для того, чтобы выбранная дуга единичной окружности была ду-
гой регулярности для рассматриваемого ряда.
Полиа получил условия для продолжимости ряда на всю комплексную
плоскость, кроме некоторой граничной дуги [12].
Также глубоко изучена проблема нахождения множеств сингулярных то-
чек ряда, т.е. точек, через которые сумма ряда не продолжается [13], [14], [6]. В
такой постановке указанной проблемы особое место занимает ситуация, когда
все граничные точки особые, то есть когда сумма ряда не продолжается через
границу своей области сходимости [15], [16]. В основном, примеры рядов, ана-
литически непродолжимых за пределы своего круга сходимости, относятся к
серии “сильно лакунарных” рядов, иными словами, у этих рядов “много” моно-
мов с нулевыми коэффициентами. Таковыми рядами являются следующие:
∞ ∞ ∞
2n n
X X X
n!
z , z , zn .
n=0 n=0 n=0
Основные результаты диссертационной работы следющие:
1. Получен критерий продолжимости кратного степенного ряда через гра-
ничное множество полидуг на языке асимптотического поведения целой функ-
ции, интерполирующей коэффициенты ряда.
2. Для одномерных рядов найдены условия локальной продолжимости ря-
да через граничную дугу, и условия продолжимости ряда в секториальную об-
ласть, используя мероморфные интерполяции коэффициентов ряда.
3. Построена лакунарная шкала степенных рядов одного переменного,
непродолжимых за пределы круга сходимости и бесконечно дифференцируемых
в замыкании круга, включающая в себя ряды Фредгольма. На основе этой шка-
лы построены примеры кратных степенных рядов с аналогичными свойствами
в единичном поликруге.
ПРИЛОЖЕНИЕ
П.1 Индикатор роста целой функции
Говорят, что целая функция ϕ(z) комплексного переменного z ∈ C имеет
экспоненциальный тип, если
ln |ϕ(z)|
lim < +∞.
z→∞ |z|
Индикатором (или индикатрисой роста) целой функции ϕ(z) экспоненци-
ального типа называется предел [6]
ln |ϕ(reiθ )|
hϕ (θ) := lim , θ ∈ R.
r→∞ r
Индикатор характеризует рост функции ϕ на лучах z = reiθ (здесь r ∈ R+ , а θ
фиксировано). Из определения следует, что hϕ (θ) является действительно знач-
ной 2π-периодической функцей. Одно из основных свойств индикатора hϕ (θ)
состоит в его тригонометрической выпуклости [38],[6]:
Если θ1 < θ < θ2 и θ2 − θ1 < π, то справедливо неравенство
hϕ (θ) sin (θ2 − θ1 ) ≤ hϕ (θ1 ) sin (θ2 − θ) + hϕ (θ2 ) sin (θ − θ1 ).
Если целая функция ϕ(z) представляется степенным рядом
∞
X
ϕ(z) = ak z k ,
k=0
то ряд Лорана
∞
X
ϕ̂ = ak k!z −k−1 (3.1)
k=0
называется преобразованием Бореля функции ϕ.
Связь между множеством особенностей функции ϕ̂ и индикатором функции ϕ
описывается теоремой Полиа [34], [22]. Для ее формулировки напомним, что
опорной функцией выпуклого множества K называется функция
k(θ) = sup Re(ze−iθ ).
z∈K
Заметим, что если z = x + iy, то
Re(ze−iθ ) = x cos θ + y sin θ.
Теорема (Полиа [34]) Индикатор hϕ (θ) целой функции ϕ экспоненциаль-
ного типа связан с опорной функцией k(θ) наименьшего выпуклого компакта
K, вне которого аналитически продолжается hϕ , по формуле
hϕ (θ) = k(−θ).
Заметим, что ввиду выпуклости компакт K представляется пересечением
полуплоскостей :
K= {z : Re(ze−iθ ) < ν}.
θ∈[0,2π]
Этот факт берется за основу формулировки многомерного аналога теоремы По-
лиа.
В n-мерном случае под целой функции экспоненциального типа понимает-
ся функция ϕ(z) = ϕ(z1 , ..., zn ), для которой существуют положительные числа
A, σ1 , ..., σn такие, что для всех z ∈ Cn имеет место неравенство
|ϕ(z)| ≤ Aeσ1 |z1 |+...+σn |zn | .
Аналогично одномерному случаю целой функции
X
ϕ(z) = ak z k , (3.2)
k∈Nn
где k = (k1 , ..., kn ), z k = z1k1 ...znkn , сопоставляется преобразование Бореля
∞
X
ϕ̂(z) = ak k!z −k−1 ,
|k|≥0
где k! = k1 !...kn !.
Для целой функции ϕ экспоненциального типа определим множество
Tϕ (θ) = {ν ∈ Rn : ln |ϕ(reiθ )| ≤ ν1 r1 + ... + νn rn + Cν,θ },
где неравенство выполняется для любого r ∈ Rn+ при некоторой константе Cν.θ .
Пусть Cϕ (θ) — множество векторов ν ∈ Rn таких, что функция ϕ̂(z) из
окрестности (∞, ..., ∞) продолжается в область
Gν,θ = {z : Re(zj e−iθj ) > νj , j = 1, .., n},
которая представляет собой прямое произведение полуплоскостей.
Теорема (Иванов-Ставский [28], [22]) Пусть ϕ(z) целая функция экспо-
ненциального типа, тогда
Tϕ (θ) = Cf (−θ).
П.2 Многомерные вычеты и аналог леммы Жордана
Пусть ω мероморфная в Cn дифференциальная форма вида
h(z)dz1 ∧ … ∧ dzn
ω= (3.3)
f1 (z)…fn (z)
с полюсами на дивизорах Dj = {z : fj (z) = 0}, j = 1, …, n. В предположении,
что пересечение Z = D1 ∩ … ∩ Dn дискретно, для каждой точки a ∈ Z опреде-
ляется локальный вычет (вычет Гротендика) относительно системы дивизоров
{Dj } как интеграл (см. [39], гл. 5 или [37], §5)
Z
resa ω = ω, (3.4)
(2πi)n
Γa
где Γa = {z ∈ Ua : |fj (z)| = ε, j = 1, …, n} – цикл в некоторой малой окрестно-
сти Ua точки a, ориентация которого задается неравенством
d(argf1 ) ∧ … ∧ d(argfn ) ≥ 0.
Когда f1 , …, fn таковы, что якобиан ∂(f )/∂(z) в точке a отличен от нуля, локаль-
ный вычет равен (формула Коши)
h(a)
resa ω = ∂(f )
. (3.5)
∂(z) (a)
Рассмотрим вопрос о том, когда интеграл
Z
ω (3.6)
(2πi)n
Γa
мероморфной формы (3.3) по остову σ некоторого полиэдра Π равен сумме вы-
четов (3.4) в точках a ∈ Π. Под полиэдром подразумевается прообраз g −1 (∂G)
собственного отображения g : Cn → Cn области G = G1 × … × Gn , где каж-
дая Gj является областью комплексной плоскости с кусочно-гладкой границей
∂Gj . Остов полиэдра – это множество g −1 (∂G1 × … × ∂Gn ), ориентация кото-
рого определяется порядком параметров τ1 , …, τn , параметризующих границы
∂G1 , …, ∂Gn соответственно.
С каждым мультииндексом K = {k1 , …, ks } ⊂ {1, …, n} ассоциируется
грань
σK = {z : gk (z) ∈ ∂Gk , k ∈ K, gj (z) ∈ Gj , j ∈
/ K}.
Семейство дивизоров {Dj } называется согласованным с полиэдром Π, ес-
ли
Dj ∩ σj =, j = 1, …, n. (3.7)
Если Π – ограниченный полиэдр и {Dj } – согласованное с Π семейство
дивизоров, то интеграл 3.6 равен сумме вычетов 3.4 по всем точкам a ∈ Π [36].
Для неограниченных полиэдров необходимо дополнительное условие убывания
подынтегрального выражения на бесконечности, как это требуется в классиче-
ской одномерной лемме Жордана [36]. С помощью функций fj определяющих
дивизоры Dj , введем в рассмотрение функции
|fj |2
ρj = 2
, где ||f ||2 = |f1 |2 + … + |fn |2 .
||f ||
С каждым мултииндексом J = {j1 , …, js } ⊂ {1, …, n} при 1 ≤ s ≤ n свяжем
(n, s − 1)-дифференциальную форму
X
ξJ = ¯ J [j] ∧ ω,
(−1)(j,J)−1 ρj ∂ρ
j∈J
¯ 1 ∧ …[j]… ∧ ∂ρ
¯ J [j] = ∂ρ
где (j, J) означает позицию j в наборе J, а ∂ρ ¯ s.
Говорят, что дифференциальная форма ξj удовлетворяет условию Жор-
дана на грани σJ o где J o = {1, …, n} J, если существует последовательность
вещественных чисел Rk , сходящаяся к +∞ при k → ∞, такая, что
Z
lim ξj = 0, (3.8)
k→∞
SRk ∩ σJ o
где SR – сфера радиуса R с центром в некоторой точке остова σ = σ1…n полиэдра
Π.
Теорема (многомерная абстрактная лемма Жордана [31], [45]). Если се-
мейство дивизоров {Dj } согласовано с полиэдром Π и для каждого мултиин-
декса J форма ξJ удовлетворяет условию Жордана на грани σJ o , то
Z X
n
ω = (2πi) resa ω.
σ a∈Π
Последовательность сфер SRk в теореме можно заменить любой другой
последовательностью кусочно-гладких поверхностей такой, что области, огра-
ниченные гранями полиэдра и поверхностями этой последовательности, исчер-
пывают весь полиэдр при R → ∞.
1. Hadamard J. La série de Taylor et son prolongement analytique. / Hadamard J. –
C. Hérissey, 1901. – №12. – С. 102.
Помогаем с подготовкой сопроводительных документов
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!