Разработка составов и технологии получения огнеупорных материалов на основе корунда и муллита с повышенной стойкостью к высокотемпературным деформациям

Тюлькин, Дмитрий Сергеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Введение ……………………………………………………………………………………………………. 6

Глава 1. Современные представления о физико-химических процессах и
технологии получения огнеупорных материалов на основе корунда и муллита
………………………………………………………………………………………………………………… 14

1.1 Назначение и тенденции развития огнеупорных материалов и изделий .. 14

1.2 Классификация и характеристики огнеупорных материалов на основе
корунда и муллита ……………………………………………………………………………………. 16

1.3 Кристаллохимические и физико-технические характеристики корунда и
муллита ……………………………………………………………………………………………………. 21

1.3.1 Кристаллохимические и физико-технические свойства корунда ….. 21

1.3.2 Структурные и технические характеристики муллита. Особенности
синтеза муллита …………………………………………………………………………………. 24

1.4 Влияние структурных особенностей огнеупорных материалов на их
термомеханические свойства ……………………………………………………………………. 30

1.5 Влияние зернового и компонентного состава шихты на
термомеханические свойства огнеупорных материалов…………………………….. 33

1.6 Способы активирования процессов спекания огнеупорных материалов . 39

1.7 Технология формования огнеупорных изделий различной конфигурации
и размеров ……………………………………………………………………………………………….. 42

1.8. Заключение, постановка цели и задач исследования …………………………… 46

Глава 2. Методы исследования. Характеристики исходных материалов.
Методология работы ………………………………………………………………………………… 49
2.1. Методы исследования и измерения свойств огнеупорных материалов … 49

2.1.1 Физико-химические методы исследования ………………………………….. 49

2.1.2 Методики определения физико-механических свойств ……………….. 52

2.2 Характеристики исходных материалов ……………………………………………….. 57

2.2.1 Зерновой и химический составы электрокорунда Юргинского
абразивного завода……………………………………………………………………………… 57

2.2.2 Характеристики бокситогорского глинозема марки ГН……………….. 58

2.2.3 Характеристики обогащенного каолина месторождения
«Журавлиный лог» (Челябинская область) ………………………………………….. 60

2.2.4 Характеристики глиноземистых цементов ………………………………….. 63

2.2.5 Характеристики высокоглиноземистого цемента (ВГЦ) марок Secar-
71 и Secar-80 (Франция) ……………………………………………………………………… 66

2.3 Методология работы …………………………………………………………………………… 70

Глава 3. Разработка муллитокорундовых огнеупорных материалов…………… 72

3.1 Физико-химические принципы получения огнеупорной оснастки при
производстве технической керамики ………………………………………………………… 72

3.2 Модели и роль фрагментарной структуры по приданию огнеупорному
материалу необходимых эксплуатационных свойств ………………………………… 78

3.3 Выбор предпочтительных соотношений компонентов
муллитокорундовых огнеупорных материалов …………………………………………. 84

3.4 Фазовый состав, структура и технические характеристики импортный
огнеупорной оснастки………………………………………………………………………………. 87

3.5 Физико-химические процессы, протекающие при синтезе
муллитокорундовой керамической связки ………………………………………………… 93
3.6 Разработка муллитокорундовых материалов на основе муллитового
наполнителя …………………………………………………………………………………………… 103

3.7 Разработка муллитокорундовых материалов на основе корундового
наполнителя …………………………………………………………………………………………… 111

Выводы по главе 3 ………………………………………………………………………………….. 116

Глава 4. Разработка составов и технологии изготовления огнеупорных
изделий сложной формы методом вибролитья с использованием
высокоглиноземистого цемента ……………………………………………………………… 118

4.1 Преимущества и особенности технологии получения огнеупоров методом
вибролитья …………………………………………………………………………………………….. 118

4.2 Выбор предпочтительных соотношений компонентов корундовых
огнеупорных материалов с использованием ВГЦ ……………………………………. 121

4.3 Физико-химические процессы, протекающие при синтезе керамической
связки с применением алюминатов кальция ……………………………………………. 124

4.4 Технологические особенности получения корундовых огнеупорных
материалов …………………………………………………………………………………………….. 130

4.4.1 Микроструктура и свойства спеченных огнеупорных материалов 135

4.4.2 Стойкость разработанных огнеупоров к высокотемпературным
деформациям под нагрузкой ……………………………………………………………… 139

Выводы по главе 4 ………………………………………………………………………………….. 142

Глава 5. Разработка технологии изготовления огнеупорной оснастки для
обжига алюмооксидной керамики …………………………………………………………… 144

5.1 Номенклатура огнеупорной оснастки для обжига керамических изделий
………………………………………………………………………………………………………………. 144
5.2 Характеристика сырья, полупродуктов ……………………………………………… 148

5.3 Технологические схемы изготовления огнеупорных изделий …………….. 150

5.4 Технологические режимы при изготовлении огнеупорной оснастки ….. 153

Выводы по главе 5 ………………………………………………………………………………….. 157

Заключение ……………………………………………………………………………………………. 158

Основные выводы ………………………………………………………………………………….. 161

Список литературы ………………………………………………………………………………… 164

Приложение 1. Акт о апробировании результатов исследований …………….. 179

Приложение 2. Акт о внедрении в серийное производство составов и
технологии получения огнеупорной оснастки для производства технической
керамики ………………………………………………………………………………………………… 181

Приложение 3. Протокол испытаний огнеупорных образцов на
огнеупорность и температуру начала деформации под нагрузкой ……………. 183

Приложение 4. Протокол испытания механической прочности на сжатие
огнеупорных муллитокорундовых образцов на основе корундового и
муллитового наполнителя ………………………………………………………………………. 184

Приложение 5. Протокол испытания механической прочности на сжатие
корундовых огнеупорных образцов ………………………………………………………… 186

Актуальность работы. Среди всего спектра огнеупорных материалов
широкое применение находят корундовые и муллитокорундовые огнеупоры,
обладающие достаточно высокими значениями огнеупорности и прочности.
На основе корунда и муллита разработан целый ряд составов,
предназначенных, в основном, как и другие классы огнеупоров, для
удовлетворения нужд металлургической промышленности.
В то же время существуют производства высокотемпературной
технической керамики, в частности алюмооксидной, которая играет важную
роль в развитии высокотехнологичных областей современной техники.
Процесс производства этого вида керамики требует использования
специальной огнеупорной оснастки с повышенной стойкостью к

Для достижения поставленной цели и решения сформулированных
задач согласно принятой методологии работы по созданию огнеупорных
материалов на основе корунда и муллита с заданной фрагментарной
структурой, обладающих повышенной стойкостью к высокотемпературным
деформациям, проведены следующие исследования:
− осуществлен анализ химического, фазового, дисперсного составов и
структурных особенностей исходных компонентов: юргинского
электрокорунда, бокситогорского глинозема марки ГН, обогащенного
каолина марки КЖФ (месторождение «Журавлиный лог»),
высокоглиноземистого цемента марки Secar (Франция);
− определены предпочтительные соотношения оксидов для получения
высокотемпературной керамической связки и составов шихты огнеупоров на
основании анализа диаграмм состояния систем: Al2O3–SiO2; CaO–Al2O3, при
этом произведена оценка фазового состава и структуры импортных
огнеупоров успешно используемых в настоящее время в производстве
технической керамики;
− изучены физико-химические процессы, протекающие при
нагревании смеси компонентов керамических связок и муллитокорундовых,
корундовых составов шихт до 1600 оС, структурнофазовые особенности
обожженных огнеупорных материалов;
− осуществлена разработка рациональных технологических приемов
формования огнеупорных изделий различной конфигурации методами
полусухого прессования и вибролитья.
В ходе исследования установлено:
− исходные компоненты (юргинский электрокорунд, бокситогорский
глинозем марки ГН, обогащенный каолин марки КЖФ,
высокоглиноземистый цемент марки Secаr-80) по химическим, фазовым,
гранулометрическим составам и структурным характеристикам
соответствуют предъявляемым техническим требованиям и могут быть
использованы для проектирования огнеупорных материалов с повышенной
стойкостью к высокотемпературным деформациям;
− достижение высоких показателей по огнеупорности и стойкости к
высокотемпературным деформациям материалов на основе корунда и
муллита согласно диаграмме состояния Al2O3–SiO2 возможно при
соотношении оксидов Al2O3 : SiO2 как 3 : 2 с содержанием Al2O3 более 72,0
мас.%, а для системы CaO–Al2O3 при содержании Al2O3 более 85 мас.%.
− импортная огнеупорная оснастка, успешно используемая в
настоящее время в производстве технической керамики, имеет
муллитокорундовый состав и структуру фрагментарного типа;
− процессы, протекающие при нагревании до 1600 оС огнеупорных
составов шихт, включающих огнеупорный наполнитель и исходные
компоненты керамической связки, сопровождаются разложением исходных
компонентов, синтезом муллита в широком интервале температур от 520 до
1600 оС и образованием высокотемпературной керамической связки. Состав
керамической связки в зависимости от вида исходных компонентов
представлен: для составов (каолин глинозем) – зернами корунда с
размерами 1–5 мкм и муллита с игольчатой формой кристаллов; для составов
(высокоглиноземистый цемент глинозем) – мелкозернистым β-Al2O3 и
зернами корунда. Образующаяся при совместном нагревании с наполнителем
высокотемпературная керамическая связка формирует фрагментарную
структуру обожженного огнеупора и придает ему высокие
термомеханические свойства;
− получение корундовых и муллитокорундовых огнеупорных
материалов с повышенной стойкостью к высокотемпературным
деформациям реализуется с применением отечественных исходных
компонентов: электрокорунда Юргинского абразивного завода,
бокситогорского глинозема марки ГН, обогащенного каолина марки КЖФ
(«Журавлиный лог», Челябинская область) и высокоглиноземистого цемента
с содержанием Al2O3 ≥ 80 мас.%;
− рациональными методами формования огнеупорных изделий на
основе разработанных составов с учетом их конфигурации являются:
полусухое прессование (для изделий простой формы, небольших размеров) и
вибролитье тиксотропных высококонцентрированных корундовых смесей с
использованием высокоглиноземистого цемента (для изделий сложной
формы и больших размеров).
Таким образом, полученные результаты по синтезу
высокотемпературных видов керамической связки и по проектированию
муллитокорундовых и корундовых огнеупорные материалы с повышенной
устойчивостью к высокотемпературным деформациям могут быть
рекомендованы для всей группы алюмосиликатных и глиноземистых
огнеупоров (ГОСТ 28874-2004), при этом муллитокорундовый состав связки
целесообразно использовать при создании муллитовых и
муллитокорундовых огнеупорных материалов, а керамическую связку на
основе β-Al2O3 – при разработке корундовых огнеупорных материалов.
Основные выводы

1. Сырьевые материалы отечественного производства, а именно:
бокситогорский глинозем марки ГН, электрокорунд белый (г. Юрга), каолин
марки КЖФ отвечают требованиям, необходимым для производства
высокотемпературной термостойкой керамической оснастки муллито-
корундового состава, с точки зрения сформированности фазового состава и
минимального содержания примесей. Характеристики отечественных
высокоглиноземистых цементов (Al2O3 > 70 мас. %) не удовлетворяют
требованиям по содержанию легкоплавких примесей и выпускаются в
ограниченном объеме.
2. При синтезе муллитокорундовой огнеупорной керамической связки
с содержанием Al2O3 от 72 до 80 мас.% из смеси каолина и тонкомолотого
глинозема муллитообразование наблюдается в широком температурном
интервале (1100–1650 оС), при этом формируется тонкоигольчатый муллит с
размером игл 10–15 мкм и соотношением длины к диаметру 8:1. Введение
модифицирующих добавок MgO и TiO2 приводит к уплотнению
керамической связки по сравнению с немодифицированными составами, при
этом наблюдаются рост кристаллов муллита до 15–20 мкм и уменьшение
отношения длины к диаметру до 5:1. При избытке Al2O3 по сравнению со
стехиометрией в муллите (72 мас.%) наблюдаются отдельные хорошо
окристаллизованные зерна корунда гексагональной пластинчатой формы
размерами 5–10 мкм.
3. Формирование корундовой (высокоглиноземистой) огнеупорной
связки из смеси тонкодисперсного глинозема и высокоглиноземистого
цемента (2:1) сопровождается ступенчатым разложением гидратированных
алюминатов кальция и образованием из высококальциевых алюминатов
после взаимодействия с глиноземом гексаалюмината кальция (β-Al2O3).
Конечный фазовый состав связки представлен высокоогнеупорным
гексаалюминатом кальция пластинчатой формы и тонкозернистым корундом
гексагональной формы, что определяет стойкость к высокотемпературным
деформациям.
4. Использование электроплавленного муллита с соотношением
фракций 0,45–2,00 мм : 2–5 мм равным 1 : 3 и керамической связки
муллитокорундового состава на основе глинозема марки ГН (dср = 2–4 мкм) и
каолина марки КЖФ (месторождение «Журавлиный лог») обеспечивает
получение муллитокорундовых огнеупорных материалов на основе
муллитового наполнителя с открытой пористостью 12–21%, прочностью на
сжатие 50–130 МПа и огнеупорностью более 1700 оС. Микроструктура
огнеупорного материала представляет собой муллитовый каркас с
равномерно распределенной керамической связкой, представленной
игольчатым муллитом и тонкозернистым корундом.
5. Муллитокорундовые огнеупорные материалы на основе
корундового наполнителя с прочностью на сжатие 200–300 МПа и
огнеупорностью более 1700 оС получены на основе отечественного сырья:
юргинского электрокорунда с размером зерен от 0,01 до 3,0 мм,
бокситогорского глинозема марки ГН и каолина марки КЖФ (месторождение
«Журавлиный лог»). Микроструктура фрагментарного типа
муллитокорундовых огнеупоров представляет собой каркас из зерен
электрокорунда, скрепленный керамической связкой, представленной
игольчатым муллитом и тонкозернистым корундом.
6. Корундовые огнеупорные материалы с прочностью на изгиб 36–44
о
МПа, температурой начала деформации под нагрузкой более 1700 С
получены с использованием электрокорунда с фракциями (0,5–0,0 мм) и
(3,0–0,5 мм), тонкоизмельченного (dср = 2−4 мкм) глинозема и
высокоглиноземистого цемента с содержанием Al2O3 ≥ 80 мас.% при
соотношении компонентов: 8 : 1,3 : 0,7. Высокая стойкость огнеупорного
материала к деформациям при повышенной температуре обеспечивается
свойствами керамической связки, состоящей из кристаллов β-Al2O3 и Al2O3, а
фрагментарная структура материала обеспечивает повышенный ресурс
работы при термоциклических нагрузках.
7. Рациональной технологией формования огнеупорных
крупногабаритных изделий сложной конфигурации (капселя, плиты и др.)
является способ вибролитья тиксотропной корундовой смеси с добавкой
высокоглиноземистого цемента, исключающий применение дорогостоящего
оборудования (прессов с большим усилием и массивных сложной
конструкции пресс-форм), для формования изделий простой формы и
небольших размеров (стойки) применима технология полусухого
прессования.
8. Широкая опытно-промышленная апробация разработанных
составов огнеупорных материалов и технологий получения изделий на их
основе в серийном производстве подтверждает достоверность полученных
результатов и технико-экономическую эффективность выполненного
исследования.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Мария А. кандидат наук
    4.7 (18 отзывов)
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет... Читать все
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет, реклама, журналистика, педагогика, право)
    #Кандидатские #Магистерские
    39 Выполненных работ

    Последние выполненные заказы

    Другие учебные работы по предмету