Реологические свойства жидких и мягких магнитных полимеров : диссертация на соискание ученой степени кандидата физико-математических наук : 01.04.11

📅 2021 год
Мусихин, А. Ю.
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

ВВЕДЕНИЕ ………………………………………………………………………………………………………………………………4

ГЛАВА 1. МАГНИТНЫЕ ЖИДКОСТИ, ГЕЛИ И ЭЛАСТОМЕРЫ. ……………………….. 12

1.1. Магнитные жидкости ……………………………………………………………………………… 12

1.2. Магнитные полимеры …………………………………………………………………………….. 15

1.3. Практическое применение магнитных эластомеров и феррогелей ……………. 16

1.4. Фундаментальные исследования магнитных полимеров…………………………… 19

ГЛАВА 2. УПРУГИЕ СВОЙСТВА ФЕРРОГЕЛЕЙ С ПРОСТРАНСТВЕННО
ОДНОРОДНЫМ РАСПОЛОЖЕНИЕМ ЧАСТИЦ ……………………………………………………….. 28

2.1. Введение ……………………………………………………………………………………………….. 28

2.2. Физическая модель ………………………………………………………………………………… 29

2.3. Перегруппировка частиц из-за магнитного взаимодействия ……………………… 36

2.4. Структурная анизотропия из-за деформации сдвига …………………………………. 38

2.5. Усредненные компоненты намагниченности частицы ………………………………. 40

2.6. Результаты и обсуждение ……………………………………………………………………….. 41

2.7. Выводы………………………………………………………………………………………………….. 44

ГЛАВА 3. СДВИГОВОЕ И ОДНООСНОЕ НАПРЯЖЕНИЕ В МАГНИТНОМ
ПОЛИМЕРЕ С АНИЗОТРОПНЫМИ СТРУКТУРАМИ …………………………………………….. 46

3.1. Введение ……………………………………………………………………………………………….. 46

3.2. Физико-математическая модель. Деформация сдвига ………………………………. 47

3.3. Напряжение растяжения …………………………………………………………………………. 57

3.4. Выводы………………………………………………………………………………………………….. 62
ГЛАВА 4. МОДЕЛИРОВАНИЕ ВНУТРЕННИХ МАГНИТОРЕОЛОГИЧЕСКИХ
ЭФФЕКТОВ В ФЕРРОГЕЛЯХ С ЧАСТИЦАМИ ПЕРМАЛЛОЯ ………………………………. 64

4.1. Введение ……………………………………………………………………………………………….. 64

4.2. Построение модели формирования цепочки ……………………………………………. 66

4.3. Определение среднего количества агломератов в цепочках ……………………… 78

4.4. Макроскопическая сдвиговая деформация композита ……………………………… 84

4.5. Выводы………………………………………………………………………………………………….. 87

ГЛАВА 5. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ УПРУГИХ И
МАГНИТНЫХ СВОЙСТВ МАГНИТНЫХ ПОЛИМЕРОВ ………………………………………… 89

5.1. Синтез и подготовка образцов…………………………………………………………………. 89

5.2. Измерение кривых намагничивания образцов. ………………………………………… 91

5.3. Измерение напряжений при механическом растяжении образцов. …………… 96

5.4. Выводы………………………………………………………………………………………………… 105

ГЛАВА 6. МАГНИТОИНДУЦИРОВАННЫЕ ЦИРКУЛЯЦИОННЫЕ ТЕЧЕНИЯ В
ФЕРРОЖИДКОСТЯХ……………………………………………………………………………………………………… 106

6.1. Введение ……………………………………………………………………………………………… 106

6.2. Математическая модель и основные приближения ……………………………….. 107

6.3. Анализ уравнений модели …………………………………………………………………….. 113

6.4. Результаты и обсуждения ……………………………………………………………………… 115

6.5. Выводы………………………………………………………………………………………………… 118

ЗАКЛЮЧЕНИЕ…………………………………………………………………………………………………………………. 120

ПРИЛОЖЕНИЕ ………………………………………………………………………………………………………………… 125

СПИСОК ЛИТЕРАТУРЫ ……………………………………………………………………………………………….. 127

Объектом исследования диссертационной работы является магнитные
жидкости и композиты, состоящих из несущих полимерных сред и внедренных в
них нано- и микроразмерных магнитных частиц. Предметом исследования
является микроскопическая природа их магнитореологических свойств и
особенностей динамического поведения.

Степень разработанности темы. Последние десятилетия магнитные жидкости
и полимеры активно синтезируются и изучаются во всем мире. Причина этого –
богатый набор уникальных физических свойств, важных для современных и
перспективных промышленных и медико-биологических приложений. Одним из
интересных, с общенаучной, и важных, с практической точки зрения,
особенностей таких систем является их способность сильно, вплоть до
нескольких порядков величины, менять свои реологические свойства, а также
форму и размеры под действием приложенного магнитного поля. За годы
интенсивных исследований по этой теме собран большой массив
экспериментальных данных, но фундаментальная связь между наблюдаемыми
макроскопическими явлениями и эффектами на микроскопическом (то есть в
масштабе размеров частиц и расстояний между ними) и мезоскопическом (в
масштабе размеров агрегатов частиц) уровнях установлена далеко не для всех
типов композитных материалов.

Суммируем полученные результаты проведенного теоретического и
экспериментального исследования магнитореологических свойств мягких и
жидких магнитных полимеров.

1. В первой главе был сделан литературный обзор научной литературы по
магнитным жидкостям, гелям и эластомерам; в ходе которого обсуждается
история развития науки об этих композитах, привлекающих интерес
исследователей своими уникальными физическими свойствами. Приводится
список основных работ, посвящённых экспериментальному исследованию
магнитореологического эффекта изучаемых систем, и их применению в медицине
и промышленности. Раскрывается характер магнитных полимеров как
многофункциональных интеллектуальных материалов и обосновывается научный
и практический интерес к этим системам. Также показано современное состояние
развития изучаемой области и отмечены основные нерешенные вопросы в
исследовании магнитополимерных композитов, решение которых было
представлено в последующих главах диссертации.

2. Была построена теоретическая модель магнитореологического эффекта в
феррогелях с намагничивающимися сферическими частицами, хаотично
распределенными в образце феррогеля. Главным преимуществом этой модели
является то, что она не содержит интуитивных построений с неконтролируемой
точностью и адекватностью, анализ проводился в рамках математически строгого
регулярного метода парного приближения. Результаты продемонстрировали
немонотонное поведение поперечной компоненты намагниченности и модуля
сдвига композита от приложенного магнитного поля. Также было замечено, что
этот эффект сильнее себя проявляет в системах с мягким гелем, чем с более
жестким.
3. Было проведено теоретическое исследование упругих свойств феррогелей,
заполненных намагничивающимися частицами, объединенными в линейные
цепочки, перколирующие весь образец. Образец подвергался как деформации
сдвига, так и деформации растяжения, при этом магнитное поле было приложено
вдоль цепочек перпендикулярно сдвигу и параллельно растяжению. Результаты
моделирования вскрыли интересный эффект, заключающийся в том, что при
определенном пороговом значении деформации композита, цепочки,
находящиеся в нем, разрываются, и, в результате, этот разрыв приводит к резкому
падению макроскопического напряжения. Этот эффект наблюдался для обоих
типов деформации. Сравнение результатов расчетов с экспериментальными
данными показало хорошее согласасие.

4. Представлено теоретическое исследование, в результате которого удалось
объяснить сильный магнитореологическиий эффект, наблюдаемый в феррогелях
на основе пермаллоя. В данных композитах под воздействием магнитного поля
модуль упругости может увеличиваться примерно в 200 раз. Модель основана на
том, что при полимеризации этих систем в них возникают агломераты магнитных
частиц, которые при включении поля выстраиваются в цепочки. Оказалось, что
такие микроструктурные процессы и приводят к сильному
магнитореологическому отклику. Также в ходе этого исследования была
построена модель объединения агломератов в цепочки, которая позволяет
определять среднее число этих агломератов в цепочке во всем композите.
Результаты расчетов по модулю упругости моделируемого композита
сравнивались с экспериментальными данными, с которыми качественно и
численно согласовались.

5. В ходе экспериментального исследования были синтезированы образцы
магнитных полимеров, полимеризация которых проходила в отсутствии
магнитного поля. Образцы испытывались на их упругие и магнитные свойства.
Полученные экспериментальные данные были обработаны. При анализе
результатов, полученных во время испытаний с образцами на магнитометре, был
обнаружен гистерезисный эффект, то есть зависимость намагниченности от
приложенного поля имеет гистерезисный характер, который проявляет себя
сильнее для мягких образцов, чем для более жестких. Также наблюдался
магнитореологический эффект во время испытаний образцов на тензометре с
магнитной катушкой, то есть явная зависимость упругих свойств образцов от
приложенного магнитного поля: напряжение растяжения растет нелинейно с
увеличением поля. Экспериментальные кривые хорошо согласуются
теоретической моделью напряжения растяжения, представленной в Главе 3.

6. Получены результаты теоретического исследования циркуляционного
течения в феррожидкостях под действием переменного неоднородного
магнитного поля. Было обнаружено, что неоднородность внешнего поля может
провоцировать значительное увеличение скорости течения феррожидкости.
Результаты показали, что поле с амплитудой около 15 кА/м и частотой 10 рад/c
индуцирует мезоскопический поток в канале с шириной 1 мм с амплитудой
продольной составляющей скорости около 0,5 мм/с. Механизм, изученный в
данной модели, может быть использован для увеличения скорости
транспортировки лекарства в кровеносных сосудах.

На основании вышеизложенного можно сделать следующие выводы. В
процессе проведения диссертационного исследования были решены все
поставленные задачи, и, как результат, достигнута главная цель работы, которая
заключалась в построении теоретических моделей, позволяющих количественно и
качественно описывать и прогнозировать упругие и магнитные свойства мягких
магнитных полимеров, а также развитии модели циркуляционных течений в
феррожидкости как научной основы магнитной интенсификации транспорта
лекарств в тромбированных кровеносных сосудах. Развитая теоретическая модель
позволила объяснить и количественно описать проведенный эксперимент по
растяжению магнитополимерного композита, а также известные из литературы
эксперименты по нелинейным магнитореологическим эффектам в феррогелях и
эластомерах.

Несмотря на то что экспериментально магнитополимерные материалы
достаточно хорошо исследованы, фундаментальная связь между
макроскопическими свойствами композита и микроструктурными явлениями,
происходящими внутри него, плохо изучена. Поэтому главным итогом
проведенной работы является развитие теоретических методов, позволяющих
переходить от описания механических явлений на микроскопическом и
мезоскопическом уровне, то есть отдельных частиц и образующихся из них
кластеров соответственно, к описанию макроскопических свойств изучаемых
композитных материалов.

Разработанные теоретические подходы и модели, позволяющие описывать
физические свойства и поведение этих материалов, могут быть серьезной
теоретической основой для изучения подобных систем в перспективе. В
частности, разработанные в этой работе алгоритмы численного решения задач
ограничены не очень большим количеством магнитных частиц в системе.
Поэтому следующим этапом развития данного исследования может служить учет
большого числа частиц.

При решении задачи о магнитоидуцированной рециркуляции магнитной
жидкости в канале были использованы корректные с физической точки зрения
приближения, которые позволили значительно упростить решение, полученное в
виде значений скоростей феррожидкости. Поэтому в дальнейшем эту задачу
можно усложнить и подобрать такие условия моделируемой системы
(рассмотреть другое начальное распределение облака феррожидкости, другую
конфигурацию магнитов и создаваемого ими поля), позволяющих увеличить
скорости циркуляционных течений, следовательно, увеличить темп
распространения лекарства в кровеносных сосудах.

При исследовании магнитных композитов учитывалось, что морфология
расположения частиц в композите, в зависимости от условий синтеза, может
быть как изотропной, так и анизотропной. Простейшим типом известных
анизотропных структур являются линейные цепочки частиц. Однако при синтезе
композита частицы могут формировать агрегаты более сложной геометрии.
Например, в альгинатных феррогелях на стадии синтеза, вследствие адгезионных
эффектов, частицы могут образовывать первичные агломераты, состоящие из
достаточно большого числа частиц. Учет этого обстоятельства может быть
важным для физического понимания и развития теоретических моделей мягких и
жидких магнитных полимеров.
ПРИЛОЖЕНИЕ

Форм-факторы ( ), . .. , введенные в Главе 4, в уравнении (4.31) [57]:
= ,
0′

2( 2 − 1)
= ,
( 2 0 + 0 )

4 2
ζ= − ,
( 2 + 1) 0′ 0′

2 0′′ 8 2
χ= ′ ′′ − ′ ( 2 + ′,
0 0 0 + 1) 0

2 − 1
λ = 2 ,
+1

где

1 2 1
0 = − 2
[ + ln (2 2 − 1 − 2 √ 2 − 1)],
− 1 √ − 1
1 1
0 = 2
[ − ln (2 2 − 1 + 2 √ 2 − 1)],
−1 2
2√ − 1

1 3
0′ = 2 2
[ (2 2
− 5) − ln (2 2 − 1 − 2 √ 2 − 1)],
4( − 1) 2√ 2 − 1

1 2 + 2 3
0′ = 2 [ − ln (2 2 − 1 + 2 √ 2 − 1)],
( − 1)2 2
2√ − 1
1 4 2 − 1
0′′ = 2
[ (2 + 1) − ln (2 2 − 1 + 2 √ 2 − 1)],
4( 2 − 1)2 2
2√ − 1

1 2 2 + 1
0′′ =− 2 [3 + ln (2 2 − 1 − 2 √ 2 − 1)].
( − 1) 2
2√ 2 − 1

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Ольга Б. кандидат наук, доцент
    4.8 (373 отзыва)
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских... Читать все
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских диссертаций, дипломных и курсовых работ. Слежу за новинками в медицине.
    #Кандидатские #Магистерские
    566 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Кирилл Ч. ИНЖЭКОН 2010, экономика и управление на предприятии транс...
    4.9 (343 отзыва)
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). С... Читать все
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). Сейчас пишу диссертацию на соискание степени кандидата экономических наук.
    #Кандидатские #Магистерские
    692 Выполненных работы
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Мария А. кандидат наук
    4.7 (18 отзывов)
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет... Читать все
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет, реклама, журналистика, педагогика, право)
    #Кандидатские #Магистерские
    39 Выполненных работ
    Мария Б. преподаватель, кандидат наук
    5 (22 отзыва)
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальнос... Читать все
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальности "Экономика и управление народным хозяйством". Автор научных статей.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Анна Н. Государственный университет управления 2021, Экономика и ...
    0 (13 отзывов)
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уни... Читать все
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уникальности с нуля. Все работы оформляю в соответствии с ГОСТ.
    #Кандидатские #Магистерские
    0 Выполненных работ

    Последние выполненные заказы

    Другие учебные работы по предмету