Top.Mail.Ru

Решения и формулы Варинга для системы n алгебраических уравнений от n неизвестных

Куликов, Владимир Русланович

Введение 3

1 Решения систем в виде гипергеометрических степен-
ных рядов и формулы Варинга 14
1. Формулировка теоремы о представлении решения ги-
пергеометрическим рядом . . . . . . . . . . . . . . . . 14
2. Линеаризация системы . . . . . . . . . . . . . . . . . 16
3. Доказательство теоремы 1 . . . . . . . . . . . . . . . . 17
4. Формулы Варинга . . . . . . . . . . . . . . . . . . . . 23
5. Примеры . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Решения систем в виде гипергеометрических инте-
гралов Меллина-Барнса 31
6. Преобразование Меллина мономиальной функции
решения системы . . . . . . . . . . . . . . . . . . . . . 32
7. Необходимое условие сходимости интеграла решения
системы алгебраических уравнений . . . . . . . . . . 34
8. О достаточном условии сходимости интеграла . . . . 42
9. Пример . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Литература 54

В 1921 году Г. Меллин [1] получил формулу для решения общего
приведенного алгебраического уравнения

y m + x1 y m1 + . . . + xp y mp − 1 = 0. (0.1)

Мы называем это уравнение общим по той причине, что все коэф-
фициенты независимо друг от друга пробегают поле комплексных
чисел.
Решение y(x) = y(x1 , . . . , xp ) уравнения (0.1) (которое называ-
ют общей алгебраической функцией) было представлено им в виде
кратного интеграла (одного из представителей класса интегралов
Меллина-Барнса [2]), а также в виде степенного ряда гипергеомет-
рического типа. Ряды гипергеометрического типа представляются
конечной суммой гипергеометрических рядов по Горну [3]: отно-
шения соседних коэффициентов последних рядов являются раци-
ональными функциями от переменных суммирования ряда.
Приведенное алгебраическое уравнение (0.1) получается фик-
сацией двух коэффициентов в общем алгебраическом уравнении
степени m. Поскольку решение последнего уравнения биоднород-
но зависит от коэффициентов, такую фиксацию можно сделать при
любой паре мономов, не теряя информации о решениях [4].
Краткая хронология событий, связанных с решением алгебраи-
ческих уравнений, следующая. В 1757 г. Ламберт разложил корень
трехчлена y p +y+z в степенной ряд по параметру z. В дальнейшем,
разложения в ряды отдельных алгебраических функций были по-
лучены Эйлером и Чебышёвым. Поскольку после работ Абеля и
Галуа классическая алгебра утратила монополию на исследование
алгебраических уравнений, математики обратились к аналитиче-
ским средствам, и началось изучение интегральных представлений
общих алгебраических функций и их разложений в степенные ря-
ды. При различных предположениях относительно вида исходного
уравнения такие разложения были получены в работах Линдеман-
на [5], Меллина [1] и Биркелана [6].
Подход Меллина основан на применении интегрального преоб-
разования Меллина к решению исходного уравнения, в то время
как Биркелан получил разложения решений в степенные ряды ги-
пергеометрического типа на основе метода Лагранжа для вычис-
ления неявной функции.
Третий (дифференциально-аналитический) подход к решению
алгебраических уравнений был реализован в 1937 году К. Мэй-
ром [7]. Он предъявил естественную систему дифференциальных
уравнений, которой удовлетворяет общая алгебраическая функ-
ция. Эта система явилась прототипом ставшей знаменитой гипер-
геометрической системы GKZ (Гельфанда-Капранова-Зелевинско-
го) [8], 1989 г. Используя багаж сведений о решениях GKZ-системы,
Б.Штурмфельс [9] в 2000-м году выписал все ветви общей ал-
гебраической функции в виде так называемых гамма-рядов. Его
идеи были существенно развиты М. Пассаре и А.К. Цихом в кни-
ге [4], посвященной 200-летию Н.Абеля. Также дифференциально-
аналитический подход был развит в работах Т.М. Садыкова [10],
[11]. Одновременно с третьим подходом развивался подход Мел-
лина на основе теории многомерных вычетов [12]. Исследования
алгебраических функций в тесной связи с теорией функций и с ма-
тематической физикой проводились в статьях [13], [14], [15], [16],
[17], [18], [19].
С помощью таких инструментов, как гипергеометрические ря-
ды и многомерные вычеты, был получен новый метод описания
монодромии общей алгебраической функции y(x), основанный на
аналитических продолжениях друг в друга гипергеометрических
рядов и интегралов Меллина-Барнса [20] (2012).
Переход от скалярного уравнения (0.1) к системе уравнений
был начат в статье И.А. Антиповой [21], где она, следуя подходу
Меллина, получила решение для нижнетреугольной системы ал-
гебраических уравнений, когда первое уравнение зависит только
от первой неизвестной y1 , второе от первых двух y1 , y2 и т.д., по-
следнее n-е зависит от всех n неизвестных y1 , . . . , yn . Отметим, что
нижнетреугольные системы играют важню роль в задачах о су-
перпозиции алгебраических функций [22], поскольку n-я координа-
та yn решения такой системы есть последовательная суперпозиция
всех предыдущих координат.
Подход Меллина состоит в следующем. Вначале с помощью ли-
неаризации уравнения (0.1) вычисляется преобразование Меллина
для решения, затем на основе формулы обращения для этого пре-
образования, получается интегральное представление (в виде крат-
ного интеграла Меллина-Барнса) для решения. В свою очередь,
применяя теорию вычетов, интегральное представление сводится
к ряду гипергеометрического типа.
Следует заметить, что применение подхода Меллина к более
широкому классу систем, чем нижнетреугольные, сопряжено с
определенными трудностями. А именно, результаты исследований
данной диссертации показали, что формальный интеграл Мелли-
на-Барнса для более общих систем, как правило, имеет пустую об-
ласть сходимости. Поэтому потребовалось обосновать справедли-
вость предсказанной В.А. Степаненко [23] формулы для решений
систем в виде степенного ряда и привести ее к более совершен-
ной (регуляризованной) форме. При этом, несмотря на имеющий-
ся алгоритм Нильсон-Пассаре-Циха [24] для нахождения области
сходимости интеграла Меллина-Барнса, оставался открытым во-
прос о нахождении критерия сходимости гипергеометрического ин-
теграла, представляющего решение общей системы алгебраических
уравнений.
Цель настоящей диссертации — получить более совершенную
формулу в виде ряда гипергеометрического типа для решения си-
стемы общих алгебраических уравнений, найти критерий сходи-
мости гипергеометрического интеграла для решения, и в качестве
применения получить многомерный аналог формул Варинга для
степенных сумм корней системы.
В диссертации рассматривается приведенная система n уравне-
ний
mj
X (j)
yj + xλ y λ − 1 = 0, j = 1, . . . , n, (0.2)
λ∈Λ(j)

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Мария Б. преподаватель, кандидат наук
    5 (22 отзыва)
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальнос... Читать все
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальности "Экономика и управление народным хозяйством". Автор научных статей.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ

    Другие учебные работы по предмету

    Многомерные периодические системы всплесков
    📅 2021год
    🏢 ФГБУН Санкт-Петербургское отделение Математического института им. В.А. Стеклова Российской академии наук
    Два сюжета из гармонического анализа: квадратичные функции и задача об изоморфизме
    📅 2021год
    🏢 ФГБУН Санкт-Петербургское отделение Математического института им. В.А. Стеклова Российской академии наук