Решения и формулы Варинга для системы n алгебраических уравнений от n неизвестных

Куликов, Владимир Русланович

Введение 3

1 Решения систем в виде гипергеометрических степен-
ных рядов и формулы Варинга 14
1. Формулировка теоремы о представлении решения ги-
пергеометрическим рядом . . . . . . . . . . . . . . . . 14
2. Линеаризация системы . . . . . . . . . . . . . . . . . 16
3. Доказательство теоремы 1 . . . . . . . . . . . . . . . . 17
4. Формулы Варинга . . . . . . . . . . . . . . . . . . . . 23
5. Примеры . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Решения систем в виде гипергеометрических инте-
гралов Меллина-Барнса 31
6. Преобразование Меллина мономиальной функции
решения системы . . . . . . . . . . . . . . . . . . . . . 32
7. Необходимое условие сходимости интеграла решения
системы алгебраических уравнений . . . . . . . . . . 34
8. О достаточном условии сходимости интеграла . . . . 42
9. Пример . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Литература 54

В 1921 году Г. Меллин [1] получил формулу для решения общего
приведенного алгебраического уравнения

y m + x1 y m1 + . . . + xp y mp − 1 = 0. (0.1)

Мы называем это уравнение общим по той причине, что все коэф-
фициенты независимо друг от друга пробегают поле комплексных
чисел.
Решение y(x) = y(x1 , . . . , xp ) уравнения (0.1) (которое называ-
ют общей алгебраической функцией) было представлено им в виде
кратного интеграла (одного из представителей класса интегралов
Меллина-Барнса [2]), а также в виде степенного ряда гипергеомет-
рического типа. Ряды гипергеометрического типа представляются
конечной суммой гипергеометрических рядов по Горну [3]: отно-
шения соседних коэффициентов последних рядов являются раци-
ональными функциями от переменных суммирования ряда.
Приведенное алгебраическое уравнение (0.1) получается фик-
сацией двух коэффициентов в общем алгебраическом уравнении
степени m. Поскольку решение последнего уравнения биоднород-
но зависит от коэффициентов, такую фиксацию можно сделать при
любой паре мономов, не теряя информации о решениях [4].
Краткая хронология событий, связанных с решением алгебраи-
ческих уравнений, следующая. В 1757 г. Ламберт разложил корень
трехчлена y p +y+z в степенной ряд по параметру z. В дальнейшем,
разложения в ряды отдельных алгебраических функций были по-
лучены Эйлером и Чебышёвым. Поскольку после работ Абеля и
Галуа классическая алгебра утратила монополию на исследование
алгебраических уравнений, математики обратились к аналитиче-
ским средствам, и началось изучение интегральных представлений
общих алгебраических функций и их разложений в степенные ря-
ды. При различных предположениях относительно вида исходного
уравнения такие разложения были получены в работах Линдеман-
на [5], Меллина [1] и Биркелана [6].
Подход Меллина основан на применении интегрального преоб-
разования Меллина к решению исходного уравнения, в то время
как Биркелан получил разложения решений в степенные ряды ги-
пергеометрического типа на основе метода Лагранжа для вычис-
ления неявной функции.
Третий (дифференциально-аналитический) подход к решению
алгебраических уравнений был реализован в 1937 году К. Мэй-
ром [7]. Он предъявил естественную систему дифференциальных
уравнений, которой удовлетворяет общая алгебраическая функ-
ция. Эта система явилась прототипом ставшей знаменитой гипер-
геометрической системы GKZ (Гельфанда-Капранова-Зелевинско-
го) [8], 1989 г. Используя багаж сведений о решениях GKZ-системы,
Б.Штурмфельс [9] в 2000-м году выписал все ветви общей ал-
гебраической функции в виде так называемых гамма-рядов. Его
идеи были существенно развиты М. Пассаре и А.К. Цихом в кни-
ге [4], посвященной 200-летию Н.Абеля. Также дифференциально-
аналитический подход был развит в работах Т.М. Садыкова [10],
[11]. Одновременно с третьим подходом развивался подход Мел-
лина на основе теории многомерных вычетов [12]. Исследования
алгебраических функций в тесной связи с теорией функций и с ма-
тематической физикой проводились в статьях [13], [14], [15], [16],
[17], [18], [19].
С помощью таких инструментов, как гипергеометрические ря-
ды и многомерные вычеты, был получен новый метод описания
монодромии общей алгебраической функции y(x), основанный на
аналитических продолжениях друг в друга гипергеометрических
рядов и интегралов Меллина-Барнса [20] (2012).
Переход от скалярного уравнения (0.1) к системе уравнений
был начат в статье И.А. Антиповой [21], где она, следуя подходу
Меллина, получила решение для нижнетреугольной системы ал-
гебраических уравнений, когда первое уравнение зависит только
от первой неизвестной y1 , второе от первых двух y1 , y2 и т.д., по-
следнее n-е зависит от всех n неизвестных y1 , . . . , yn . Отметим, что
нижнетреугольные системы играют важню роль в задачах о су-
перпозиции алгебраических функций [22], поскольку n-я координа-
та yn решения такой системы есть последовательная суперпозиция
всех предыдущих координат.
Подход Меллина состоит в следующем. Вначале с помощью ли-
неаризации уравнения (0.1) вычисляется преобразование Меллина
для решения, затем на основе формулы обращения для этого пре-
образования, получается интегральное представление (в виде крат-
ного интеграла Меллина-Барнса) для решения. В свою очередь,
применяя теорию вычетов, интегральное представление сводится
к ряду гипергеометрического типа.
Следует заметить, что применение подхода Меллина к более
широкому классу систем, чем нижнетреугольные, сопряжено с
определенными трудностями. А именно, результаты исследований
данной диссертации показали, что формальный интеграл Мелли-
на-Барнса для более общих систем, как правило, имеет пустую об-
ласть сходимости. Поэтому потребовалось обосновать справедли-
вость предсказанной В.А. Степаненко [23] формулы для решений
систем в виде степенного ряда и привести ее к более совершен-
ной (регуляризованной) форме. При этом, несмотря на имеющий-
ся алгоритм Нильсон-Пассаре-Циха [24] для нахождения области
сходимости интеграла Меллина-Барнса, оставался открытым во-
прос о нахождении критерия сходимости гипергеометрического ин-
теграла, представляющего решение общей системы алгебраических
уравнений.
Цель настоящей диссертации — получить более совершенную
формулу в виде ряда гипергеометрического типа для решения си-
стемы общих алгебраических уравнений, найти критерий сходи-
мости гипергеометрического интеграла для решения, и в качестве
применения получить многомерный аналог формул Варинга для
степенных сумм корней системы.
В диссертации рассматривается приведенная система n уравне-
ний
mj
X (j)
yj + xλ y λ − 1 = 0, j = 1, . . . , n, (0.2)
λ∈Λ(j)

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа
    Мария А. кандидат наук
    4.7 (18 отзывов)
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет... Читать все
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет, реклама, журналистика, педагогика, право)
    #Кандидатские #Магистерские
    39 Выполненных работ
    Екатерина С. кандидат наук, доцент
    4.6 (522 отзыва)
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    #Кандидатские #Магистерские
    1077 Выполненных работ
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Ксения М. Курганский Государственный Университет 2009, Юридический...
    4.8 (105 отзывов)
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитыв... Читать все
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитывать все требования и пожелания.
    #Кандидатские #Магистерские
    213 Выполненных работ

    Другие учебные работы по предмету

    Многомерные периодические системы всплесков
    📅 2021год
    🏢 ФГБУН Санкт-Петербургское отделение Математического института им. В.А. Стеклова Российской академии наук
    Два сюжета из гармонического анализа: квадратичные функции и задача об изоморфизме
    📅 2021год
    🏢 ФГБУН Санкт-Петербургское отделение Математического института им. В.А. Стеклова Российской академии наук