Синтез и исследование рН-чувствительных флуорофоров на основе азааналогов (суб)фталоцианинов

Скворцов Иван Александрович
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Список условных обозначений
Введение
Литературный обзор
1. Особенности структуры и синтетические аспекты (cуб)фталоцианинов и их гетероциклических азааналогов
1.1. Пути модификации и функционализации
1.1.1. Функционализация периферии (суб)фталоцианинов
1.1.2. Раскрытие кольца субфталоцианина
1.1.3. Аксиальная модификация субфталоцианинов
2. Спектральные свойства (суб)фталоцианинов и их гетероциклических азааналогов
3
гетероциклических азааналогов
4. Окислительно-восстановительные свойства (суб)фталоцианинов и их гетероциклических азааналогов
Экспериментальная часть
5
.1
5.2
6.1
6.1.2. Общая методика синтеза 5,6-замещенных пиразин-2,3- дикарбонитрилов
6.1.3
-трет-Бутилпиразин-2,3-дикарбонитрил и его предшественник
6.1.4
,5-Дифенилфталонитрил
Подготовка растворителей и реагентов
Растворители
Реагенты
Синтез
Синтез дикарбонитрилов
6.1.1. Пиразин-2,3-дикарбонитрил
3
6.1.5
,7-Дифенил-6H-1,4-диазепин-2,3-дикарбонитрил
6.1.6. Общая методика синтеза 6,7-дигидро-1H-1,4-диазепин-2,3-
дикарбонитрилов
6.2. Синтез и аксиальная модификация трипиразиносубпорфиразинов и субфталоцианинов
6.2.1. Общая методика циклотримеризации незамещенного и 5,6- метил и 5,6-этилпиразин-2,3-дикарбонитрилов
6.2.2. Синтез региоизомеров трет-бутил замещенного триспиразиносубпорфиразината бораIII хлорида
6.2.3
,3,7,8,12,13-Гексахлоротриспиразино[2,3- b,g,l]субпорфиразинат бораIII хлорид
6.2.4
,3,7,8,12,13-Гексафенилтриспиразино[2,3- b,g,l]субпорфиразинат бораIII хлорид
6.2.5. Аксиальная модификация ряда субфталоцианинов и гексафенилтриспиразиносубпорфиразина
6.3. Синтез порфиразинов и субпорфиразинов с аннелированными 1,4-
диазепиновыми кольцами
6.3.1. Синтез несимметричного октафтор-(дибензо)субпорфиразина с аннелированным 5,7-дифенил-1,4-диазепиновым фрагментом
6.3.2. Общая методика синтеза тетракис(5,7-дифенил-6H-1,4- диазепино)[2,3-b,g,l,q]порфиразинатов AlIII, GaIII, InIII
6.3.3. Общая методика синтеза тетракис(6,7-дигидро-1H-1,4- диазепино)[2,3-b,g,l,q]порфиразинов и их металлокомплексов с MgII
7. Приборы и оборудование
8. Методы исследования и пробоподготовка
8.1. Флуоресцентные измерения
8.2. Электрохимические измерения
8.3. Приготовление микроэмульсий и фотофизические исследования в
водных растворах
Обсуждение результатов
9. Субфталоцианины и субпорфиразины с аннелированными пиразиновыми кольцами
9.1. Синтез и характеристика
9.1.1. Незамещенный и гексаалкил замещенные субпорфиразины с аннелированными пиразиновыми кольцами
9.1.2. трет-Бутил замещенные трипиразиносубпорфиразины
9.1.3. Гексахлорзамещенный трипиразиносубпорфиразин
9.1.4. Гексафенилзамещенный трипиразиносубпорфиразин
9.1.5. Аксиальная модификация гексафенилзамещенных
трипиразиносубпорфиразина и субфталоцианина
9.2. Окислительно-восстановительные свойства
9.2.1. Исследование гексахлорзамещенных трипиразиносубпорфиразина и субфталоцианина
9.2.2. Исследование гексафенилзамещенного трипиразиносубпорфиразина
9.2.3. Исследование аксиально модифицированных субфталоцианинов и трипиразиносубпорфиразинов
9.3. Спектрально-люминесцентные свойства
9.3.1. Спектры поглощения трипиразиносубпорфиразинов
9.3.2. Влияние природы растворителя на спектральные свойства
субфталоцианинов и трипиразиносубпорфиразинов
9.3.3. Осно́вные свойства субфталоцианинов и трипиразиносубпорфиразинов
9.3.4. Влияние pH на флуоресценцию аксиально модифицированных субфталоцианинов и трипиразиносубпорфиразинов
9.3.5. Спектры флуоресценции трипиразиносубпорфиразинов
10. Субпорфиразины и порфиразины с аннелированными 1,4- диазепиновыми кольцами
10.1. Синтез и характеристика
10.1.1. Симметричные октафенилзамещенные тетракис(5,7-дифенил-
6H-1,4-диазепино)[2,3-b,g,l,q]порфиразинаты AlIII, GaIII, InIII
10.1.2. Несимметричный октафтор-(дибензо)субпорфиразин с
аннелированным 5,7-дифенил-1,4-диазепиновым фрагментом
10.2. Исследование pH-чувствительных порфиразинов с аннелированными 6,7-дигидро-1H-1,4-диазепиновыми кольцами
10.2.1. Синтез и характеристика
10.2.2. Осно́ вные свойства
10.2.3. Окислительно-восстановительные свойства
11. Заключение
Список литературы
Приложение

1. Литературный обзор. В литературном обзоре проведен сравнительный анализ
основных методов синтеза макроциклов (суб)фталоцианинового типа. Рассмо-
трены основные пути модификации и функционализации структуры, а также
особенности физико-химических свойств рассматриваемых соединений (спектра-
льных, электрохимических и фотофизических). На основании проведенного ана-
лиза, выяснилось, что среди методов функционализации периферии, в особенности
для субфталоцианинов [sPc], достаточно мало или вовсе не изучен способ полной
или частичной замены аннелированных бензольных колец на электрон-
дефицитные пиразиновые или 1,4-диазепиновые фрагменты. Исходя из этого
сформулирован вывод о том, что направление, посвященное синтезу и изучению
спектрально-люминесцентных, окислительно-восстановительных и кислотно-
основных свойств новых порфиразиноидов с аннелированными пиразиновыми или
1,4-диазепиновыми кольцами, является весьма актуальным.
2.Экспериментальная часть. В данной части приведены методики синтеза, очистки
и спектральная характеристика (УФ-видимая; ИК; 1H, 11B, 13С, 19F ЯМР-спектро-
скопии и масс-спектрометрии) всех полученных соединений, а также характе-
ристики реактивов, приборов и методов, применяемых для исследования.
3. Обсуждение результатов
Синтез и характеристика трипиразиносубпорфиразинатобор (III) хлоридов

Схема 1
Синтез пиразин-аннелированных субпорфиразинов проводили путем цикло-
тримеризации соответствующего пиразин-2,3-дикарбонитрила в присутствии BCl3
(Схема 1). Поскольку BCl3 как кислота Льюиса может участвовать в донорно-
акцепторном взаимодействии с атомами азота в пиразиновых кольцах, мы испо-
льзовали его в трехкратном избытке, то есть в эквимолярном соотношении с пиразин-
2,3-дикарбонитрилами (Схема 1). В результате циклотримеризации незамещенного
пиразин-2,3-дикарбонитрила удалось получить незамещенный субпорфиразин 1 [1] с
очень низким выходом (~0,3%). Гексаалкилзамещенные производные 2 и 3 образовы-
вались лишь в следовых количествах, поэтому не были выделены и охарактеризованы
в чистом виде. В случае три-трет-бутил замещенного субпорфиразина образуется
смесь двух региоизомеров 4C1 и 4C3, которые были достаточно эффективно разделены
методом жидкостной колоночной хроматографии и выделены с уже большими
выходами (2,6% для 4C3 и 4,4% для 4C1) [5], в отличии от соединений 1-3. Строение
субпорифразинов 4C1 и 4C3 доказано на основании данных 1H ЯМР спектроскопии.
Гексахлор- 5 [4] и гексафенилзамещенные 6 [1] трипиразиносубпорфиразины бораIII
получались с примерно одинаковыми выходами (6%).
С помощью медленной диффузии паров н-гексана в бензольный раствор 5 удалось
вырастить монокристаллы бензольного сольвата. Полученные рентгеноструктурные
данные свидетельствуют о том, что структура молекулы [Cl6Pyz3sPzBCl] 5 имеет
типичную для субфталоцианинов конусообразную форму (Рис. 1, а), а атом бора
тетраэдрическое окружение и средними расстояниями B-Np 1,48 Å и B-Cl 1,86 Å.
Молекулы бензола за счёт -взаимодействий интеркалируются между соседними
молекулами субпорфиразина, которые упорядочены в виде стопки по типу «голова к
хвосту» (Рис. 1, б).
Отсутствие атомов водорода в макроцикле [Cl6Pyz3sPzBCl] 5 является важным
фактором, определяющим отличие его упаковки от субфталоцианинов. Присутствие
электрон-дефицитных дихлорпиразиновых фрагментов увеличивает -акцепторные
свойства макроцикла и усиливает его способность к --взаимодействию с донорными
фрагментами в стопке. Это может быть полезно для улучшения электрофизических
характеристик, например, подвижности носителей заряда, определяющих применение
этих макроциклов в качестве функциональных материалов в органической электро-
нике.
Рис. 1. а – молекулярная структура сольвата [Cl6Pyz3sPzBCl] 5; б – упаковка в элементарной ячейке
Медленное испарение из раствора субпорфиразина 6 в смеси бензола и ∼10%
гептана, привело к образованию тетрасольвата в виде красных игольчатых кристаллов
[Ph6Pyz3sPzBCl]×4C6H6, пригодных для рентгеноструктурного анализа. В элемента-
рной ячейке находится центросимметричная пара молекул субпорфиразина 6, сольва-
тированная четырьмя парами молекул бензола (Рис. 2, в).

Рис. 2. Молекулярная структура [Ph6Pyz3sPz] 6 (а), бензольный тетрасольват (б) и молекулярная
упаковка (в). Для ясности атомы водорода у бензольных колец (А, Б, В, Г) убраны
Аксиальная модификация субфталоцианинатов и
трипиразиносубпорфиразинатобор (III) хлоридов [2]
Для аксиальной модификации [Ph6Pyz3sPzBCl] 6 и [Ph6sPcBCl] 7 использовали два
подхода. Первый основан на замещении хлора в соответствующем аксиально хлори-
рованном макроцикле (Схема 2, метод А, II), который предварительно синтезируется,
выделяется и очищается (Схема 2, метод А, I). Второй подход представляет собой
однореакторный метод и заключается в циклотримеризации дикарбонитрилов с полу-
чением [Ph6Pyz3sPzBX] 6а-в, [Ph6sPcBX] 7а-в, [sPcBX] 8а-в (X=Cl, OPhNMe2, OPhOH,
OPh) в сочетании с последующей аксиальной модификацией в том же реакционном
сосуде (Схема 2, метод Б, III).

Схема 2
При использовании метода Б, в котором выделение и очистка промежуточного
соединения пропускается, целевое соединение выделяется с выходом в три раза выше,
чем по методу А (10%). Поэтому, именно метод Б был использован для синтеза 6а-в и
соответствующих [Ph6sPcBX] 7а-в [2]. Синтез известных [sPcBX] 8а-в был осуще-
ствлен также однореакторным методом аксиальной модификации [2].
Спектрально-люминесцентные и электрохимические свойства
субфталоцианинатов и трипиразиносубпорфиразинатобор (III) хлоридов
Из-за наличия фенильных заместителей на периферии, как дополнительных
систем электронного π-сопряжения, в ЭСП соединения 6 Q-полоса (550 нм) смещена
батохромно (на 20-25 нм) относительно незамещенного 1 и гексахлорированного 5 про-
изводных (Рис. 3). Наличие дополнительной полосы у
6, наблюдаемой между полосами B и Q, обусловлено
переносом заряда (CT-полоса) между периферийными
фенильными группами и π-электрон-дефицитным по-
рфиразиновым макроциклом, на что указывают ква-
нтово-химические расчеты, выполненные методом TD
DFT.
Полосы, наблюдаемые в спектрах флуоресценции,
являются зеркальным отображением Q-полос в соотве-
тствующих спектрах возбуждения, а значения Стоксо-
ва сдвига (9-10 нм) указывают лишь на незначительные
геометрические перестроения молекул в возбужден-
ных состояниях. Квантовые выходы флуоресценции ΦSF
определяли с помощью относительного метода с испо-
льзованием родамина 6G в качестве стандарта. Значе-
ние ΦSF для 1 (0,15 в ТГФ) вдвое ниже, чем для 4С1 и С3
Рис. 3. Спектры испусканияи 6 (Таблица 1). Для субпорфиразинов 4С1 и С3, 5 и 6
(красный), возбуждения (черный) спектры поглощения и возбуждения флуоресценции
и поглощения (точечный) для
соединений 1 в ТГФ, 4C1 и С3, 5 и
практически совпадают по характеру и соотношению
6 в CH2Cl2полос (черные точечные и сплошные линии на Рис. 3).
Наблюдаемое различие в этих спектрах для соединения
1 свидетельствует о наличии эффектов агрегации, которые также могут способствовать
гашению флуоресценции. Эффективность флуоресценции для 4С3 и 6 сопоставима с
величиной ΦSF для незамещенного субфталоцианина 8 (Таблица 1).
Таблица 1. Спектральные и фотофизические данные изученных в данной работе
трипиразиносубпорфиразинов 1, 4, 5, 6 и ряда известных субфталоцианинов 8-10

Спектральные
Фотофизические данные
СоединениеР-льданные λ, нм
BCTQλemΔλΦSFτF, нс
[sPcBCl] 8Бензол307564 57390,253,3
[Pyz3sPzBCl] 1*ТГФ306531 54211 0,15
[tBu3sPcBCl] 9С1 и С3Бензол306570 58010 0,162,8
[tBu3Pyz3sPzBCl] 4C1*CH2Cl2295530 54212 0,37 2,74 ± 0,004
[tBu3Pyz3sPzBCl] 4C3*CH2Cl2306530 54010 0,28 2,70 ± 0,005
[Cl6sPсBCl] 10*CH2Cl2314571 58090,37 2,71 ± 0,003
[Cl6Pyz3sPzBCl] 5*CH2Cl2 308, 340535 54411 0,20 2,54 ± 0,004
[Ph6Pyz3sPzBCl] 6*CH2Cl2308391 548 56012 0,29 2,57 ± 0,003
* – определено в данной работе, в качестве стандарта использовался родамин 6 G.
Квантовый выход для гексахлорзамещенного субпорфиразина 5 (ΦSF = 0,20) ниже,
чем для гексафенилзамещенного 6, что обусловлено эффектом хлора, как тяжелого
атома. Интересно, что менее симметричный региоизомер 4С1 демонстрирует более
высокий квантовый выход флуоресценции, чем симметричный 4С3 (ΦSF = 0,37 и 0,28,
соответственно). Это может быть связано с меньшей эффективностью интеркомбина-
ционной конверсии. Региоизомер 4С1 имеет самый высокий квантовый выход флуоре-
сценции среди всех известных субпорфиразинов с аннелированными пиразиновыми
кольцами 1, 5 и 6 (Таблица 1).
Экспериментальные данные, свидетельствующие о влиянии периферического
хлорирования и гексаазазамещения в субфталоцианине на акцепторные свойства ма-
кроцикла были получены с помощью метода циклической вольтамперометрии (ЦВА)
для растворов соединений 5-7 и 10 в ацетонитриле (MeCN) (1 мМ), содержащем 0,1 М
перхлората тетрабутиламмония (Bu4NClO4) в качестве фонового электролита. Значе-
ния первого восстановительного потенциала, определенные в ходе электрохимических
измерений, использовались для оценки энергии НСМО для субпорфиразинов 5-7 и
субфталоцианина 10 (Таблица 2), что являлось важным критерием для оценки их акце-
пторных свойств как потенциальных молекулярных органических полупроводников.
EНСМО(ЦВА) = (1,19 ± 0.08) (E1/2(Fc/Fc+) – (E1/21red) – (4,78 ± 0,17) (1)
Оценка энергии НСМО по величине потенциала первого восстановления E1/21,
определенного методом цикловольтамперометрии (EНСМО(ЦВА)) с использованием
корреляционного уравнения (1), хорошо согласуется со значениями, рассчитанными
методом DFT для 5, 6 и для субфталоцианина [Cl6sPc] 10 (Таблица 2).
Таблица 2. Восстановительные потенциалы субпорфиразинов 5, 6 и субфталоцианинов 10 и 7;
значения энергий НСМО; сравнение ЦВА растворов 5 и 10 в MeCN (справа)

Потенциал, ВEНСМО, эВ
 Q,
Соединение
нм
E1redР-льЦВАDFTEopt

[Cl6Pyz3sPzBCl] 5535-0,20аMeCN-4,02-4,002,31

[Cl6sPcBCl] 10571-0,74аMeCN-3,38-3,372,17

[Ph6Pyz3sPzBCl] 6550-0,81аMeCN-3,29-3,292,25

[Ph6sPсBCl] 7581-0,99бMeCN-3,12
а
– определено относительно Ag/AgCl, б – определено относительно НКЭ.

Полученные методом ЦВА результаты свидетельствуют о том, что азазамещение
в бензольных кольцах субфталоцианинов, особенно в сочетании с периферическим
хлорированием, сильно облегчает восстановление субпорфиразинового макроцикла и
позволяет достигать самого высокого электронного сродства и, тем самым, сильных
акцепторных свойств в семействе красителей субфталоцианинового типа.
Влияние среды на спектрально-люминесцентные свойства
субфталоцианинатов и трипиразиносубпорфиразинатов бора (III) с различными
аксиальными заместителями
1) Влияние кислотности среды на электронные спектры поглощения в растворах
органических растворителей. Для исследуемых субфталоцианинов и субпорфирази-
нов в средах с повышенной кислотностью наблюдается лишь обратимое кислотно-
основное взаимодействие с мезо-атомами азота и/или атомами азота пиразиновых фра-
гментов. Мы выполнили сравнительное исследование спектральных свойств три-
трет-бутил-, гексахлорзамещенных субфталоцианинов (9 и 10, соответственно) и их
пиразиновых аналогов 4C1 и 4С3, 5 и 6 в кислых средах. В случае субфталоцианинов во
время спектрофотометрического титрования в системе CH2Cl2-CF3COOH-H2SO4 после-
довательно протонируются три мезо-атома азота, причем в CF3COOH для трет-
бутилзамещенного [tBu3sPcBCl] 9 наблюдается две стадии протонирования а для гекса-
хлор-замещенного [Cl6sPcBCl] 10 только одна (Рис. 4, II)

III
Рис. 4. I-спектральные изменения, наблюдаемые для растворов [Cl6Pyz3sPzBCl] 5 в CF3COOH-H2SO4
(А) и в 96% H2SO4 (Б); II-спектральные изменения, наблюдаемые для растворов [Cl6sPcBCl] 10 в
CH2Cl2-CF3COOH (А) и в CF3COOH-H2SO4 (Б)
Введение шести электроотрицательных атомов азота в бензольные кольца субфта-
лоцианина сильно снижает основность мезо-атомов азота. В случае трет-бутил- и
фенилзамещенных субпорфиразинов 4 и 6 в 100% CF3COOH протонируется только
один мезо-атом азота, что приводит к батохромному сдвигу Q-полосы на ~40 нм. При
добавлении H2SO4 в кислотно-основное взаимодействие вступают и атомы азота
пиразиновых фрагментов и в ЭСП появляется широкая полоса поглощения. В случае
гексахлорзамещенного субпорфиразина 5 основность мезо-атомов азота дополните-
льно снижена за счет –I эффекта атомов хлора. В отличии от субпорфиразинов 4 и 6
положение Q-полосы в спектре [Cl6Pyz3sPzBCl] 5, записанном в 100% CF3COOH, и
общая спектральная картина аналогичны ЭСП в нейтральном растворителе CH2Cl2. Это
свидетельствует о том, что атомы азота ни в мезо-положениях, ни в пиразиновых
кольцах не участвуют в процессе протонирования в CF3COOH. Их протонирование
начинается лишь в сильнокислой среде CF3COOH-H2SO4 одновременно с пирази-
новыми атомами азота, что приводит к появлению новой широкой полосы в ЭСП с
максимумом 610 нм (Рис. 4, I). Можно полагать, что при этом образуется частица
[Cl6(PyzH+)3sPzBCl]H+. В 96% H2SO4 максимум Q- полосы наблюдается при 552 нм,
что позволяет предположить, что мезо-атомы азота макроцикла не протонированы. Это
можно связать со снижением их основности вследствие двукратного протонирования
пиразиновых колец с образованием частицы [Cl6(Pyz(H+)2)3sPzBCl].
2) Влияние кислотности среды на спектры флуоресценции в растворах органи-
ческих растворителей. В то время как гексаазазамещение в бензольных кольцах фени-
лзамещенного субфталоцианина приводит к гипсохромному сдвигу максимумов длин-
новолновой полосы в спектрах поглощения (и испускания), введение вместо акси-
ального хлора в молекулы субфталоцианинов или субпорфиразинов арилоксигрупп
оказывает незначительное влияние на их ЭСП. Однако кислотно-основные вза-
имодействия с участием аксиальных 4-диметиламинофенокси- или 4-гидроксигрупп
практически не влияют на спектры поглощения, но могут оказывать влияние на
спектры флуоресценции за счет эффекта переключаемого фотоиндуцированного
переноса электрона (PET). Максимумы спектров испускания аксиально модифициро-
ванных субфталоцианинов и субпорфиразинов смещаются на 10 нм по сравнению с
максимумами спектров поглощения и мало зависят от аксиальной группы (Таблица 1).
Однако интенсивность полос эмиссии и значения квантовых выходов флуоресценции
(ΦSF ) в серии аксиально модифицированных субфталоцианинов и трипиразиносубпо-
рфиразинов в среде ацетона существенно различались в зависимости от строения
аксиального заместителя и типа макроциклического ядра (Таблица 3). Соединения 6-
8 с аксиальными хлором или фенокси-группой выступали в качестве соединений
сравнения и обладали относительно высокими значениями ΦSF до 0,35.

Схема 3. Общие принципы блокирования/активации PET у аксиально модифицированных
[Ph6Pyz3sPzBX] 6а-в, [Ph6sPcBX] 7а-в и [sPcBX] 8 а-в
Для детального исследования переключения PET были проведены эксперименты
по спектрофотометрическому титрованию и измерены спектры как поглощения, так и
флуоресценции для соединений 6а, 7а и 8а, содержащих аксиальную 4-диметиламино-
фенокси группу (Схема 3). Для соединений сравнения 6в, 7в и 8в существенных
спектральных и фотофизических изменений не наблюдалось (Таблица 3). Добавление
трифторуксусной кислоты (CF3COOH) к растворам 6а, 7а и 8а в ацетоне приводило к
увеличению ΦSF более чем на два порядка (Таблица 3). Равновесные константы ассоци-
ации KA, определенные методом наименьших квадратов по зависимости концентрации
трифторуксусной кислоты от ΦSF в ацетоне, составляли 400, 1000 и 1540 M-1 для 6а, 7а
и 8а, соответственно. Данные результаты показали, что 6а, 7а и 8а могут испо-
льзоваться для флуоресцентной индикации изменения pH-среды в кислых средах.
Таблица 3. Спектральные и фотофизические данные аксиально хлорированных и
модифицированных соединений 6а, 7а и 8а
Соединение
λQ (log ε), нм λem, нмΦSF (Выкл) ΦSF (Вкл) ацетон +
ТГФацетонацетон0,03M CF3COOH
[Ph6Pyz3sPzBCl] 6550 (4,76)5620,32
[Ph6Pyz3sPzBOPhNMe2] 6а550 (4,17)563<0,0010,12 [Ph6Pyz3sPzBOPhOH] 6б550 (4,53)5620,11 [Ph6Pyz3sPzBOPh] 6в550 (4,65)5620,13 [Ph6sPcBCl] 7584 (4,93)5930,35 [Ph6sPcBOPhNMe2] 7а581 (5,01)590<0,0010,17 [Ph6sPcBOPhOH] 7б581 (5,14)5900,29 [Ph6sPcBOPh] 7в582 (5,02)5910,28 а [sPcBCl]565 (5,01 )5700,23 [sPcBOPhNMe2]565 (4,85б)570<0,0010,17 [sPcBOPhOH]563 (4,50а)5670,44 [sPcBOPh]563 (4,50а)5690,18 3) Сенсорные свойства в водных растворах. Соединения 6а, 7а и 8а с 4-диметила- минофенокси-группой в аксиальном положении сохраняли свою способность к пере- ключению PET эффекта в водных растворах (буфер Бриттон-Робинсона). В качестве солюбилизирующей системы использовали микроэмульсии (Рис. 5, Г). Спектры поглощения всех исследованных соединений в смеси с микроэмульсиями были практически идентичны ЭСП, снятым в ацетоне (Рис. 5, А). Никаких значительных изменений в положении и форме Q-полос в зависимости от pH буферного раствора не наблюдалось. Характер и положение полос в спектрах испускания соединений сравне- ния 6в, 7в и 8в также не зависели от pH буферных растворов, а квантовые выходы флуоресценции имели значение 0,13-0,16. Для 6а, 7а и 8а при более кислой pH (pH <4) PET отключался за счет протонирования донорного центра аксиального заместителя, и, как следствие, наблюдалось резкое уве- личение интенсивности флуоресценции. У соединения 8а в микроэмульсиях pKA = Рис. 5. (А) ЭСП 8а в ацетоне и в буферных 2,95; у соединений 6а, 7а pKA<2.растворах (1 μМ); (Б) спектры эмиссии 8а в Достаточно эффективная флуоресце-буферах с различным pH; На вставке: нция аксиально протонированных субфта-зависимость ΦSF 8а и 8в от pH буфера; (В) лоцианинов и субпорфиразинов 6а, 7а и 8а в зависимость ΦSF 6а, 7а и 8а (сенсоры) и 6в, 7в и воде по сравнению с некоторыми ком- 8в (соединения сравнения) в микроэмульсиях мерчески используемыми сенсорами (на- от pH буфера; (Г) схематическое изображение микроэмульсии пример, Oregon-Green 488 или Cl-Nerf) открывает перспективы для дальнейших исследований структурно нового класса pH- сенсоров in vitro. 4) Влияние основности среды на спектрально-люминесцентные свойства в растворах органических растворителей Для серии 6б, 7б и 8б содержащих 4-ги- дроксифенокси группу, ожидалась активация PET и гашение флуоресценции в осно- вных средах вследствие образования фенолята (Схема 3). Интенсивность флуоре- сценции на самом деле существенно падала при добавлении основания (DBU), однако данный эффект оказался связан с деструкцией макроцикла в присутствии оснований. Синтез и исследование порфиразиноидов с 1,4-диазепиновыми фрагментами Схема 4 Вотличиеоттрипиразиносубпорфиразинов,получающихсяпри циклотримеризации пиразин-2,3-дикарбонитрилов в присутствии эквимолярного количества 1М BCl3 в пара- ксилоле,синтезсимметричныхтриди- азепиносубпорфиразинов из 5,7-дифенил-6H-1,4-диа- зепин- и 6,7-дигидро-1H-1,4-диазепин-2,3-дикарбони- трилов не удалось реализовать, как в схожих условиях, так и меняя стехиометрию реагентов. При этом следует отметить, что 5,7-дифенил-6H-1,4-диазепин-2,3-дика- рбонитрил легко вступает в темплатную циклотетра- меризацию при сплавлении с солями металлов 13 груп- пы периодической системы – ацетилацетонатами алю- минияIII, галлияIII или индияIII, давая симметричные металлопорфиразины [Ph8TDzPzM] 12Al, 12Ga, 12In (Схема 4). На основе 6,7-дигидро-1H-1,4-диазепин-2,3- Рис. 6. Спектры испусканиядикарбонитрилов порфиразинаты Al, Ga или In аналоги- флуоресценции (красный),чным образом синтезировать не удалось, но в реакции с возбуждения (черный) иалкоголятами лития и магния на основе данных поглощения (точечный) длянитрилов были впервые получены и исследованы безме- [F12sPcBCl] 15 (сверху) и тальные макроциклы (13H2 и 14H2) и производные с Mg [Ph2DzF8sPzBCl] 11 (снизу) (13Mg и 14Mg) [3] (Схема 4). С другой стороны, с помощью статистической циклизации 5,7-дифенил-6H-1,4- диазепин-2,3-дикарбонитрила и тетрафторфталонитрила синтезирован несимметри- чный субпорфиразин 11 (A2B типа, Схема 4). Наличие диазепинового кольца в структуре соединения 11 оказалось существен- ным. Значение квантового выхода флуоресценции субпорфиразина 11 составляет 0,03, что в 9 раз ниже, чем для симметричного перфторированного субфталоцианина (0,28) (Рис. 6). На основании 1H ЯМР-спектроскопии было установлено, что диазепиновое кольцо в составе макроцикла 11 находится в 1H-форме, в отличии от порфиразинов 12Al, 12Ga и 12In, для которых наблюдалась 6H-таутомерная форма 1,4-диазепина. Для метильного производного 6,7-дигидро- 1H-1,4-диазепин-2,3-дикарбонитрила был выра- щен монокристалл, структуру которого подтве- рдили с помощью метода РСА (Рис. 7). В элеме- нтарной ячейке наблюдается образование двух типов водородных связей с участием атомов азота диазепиновых колец, все из которых находятся в состоянии sp2-гибридизации. При этом, данные РСА позволили сделать заключение, что атомы N1 и N6 являются атомами пиррольного типа (C9- N1-C3 и C13-N6-C19 = 125-126°), а N2 и N5 – пиридинового типа, C7-N2-C5 и C15-N5-C17 = 122-123°). Присутствие этих двух типов атомов азота приводит к сильной поляризации π-хромофора и смещает максимумы Q-полосы в ближнюю ИК-Рис. 7. А- упаковка молекул в область (710–740 нм для комплексов Mg и 750– IIэлементарнойячейке; Б- молекулярная структура монокристалла метильного 770 нм для 13H2 и 14H2). Диазепиновые фрагме-производного 6,7-дигидро-1H-1,4- нты, участвуя во внутримолекулярном переноседиазепин-2,3-дикарбонитрила заряда (ICT), сильно гасят флуоресценцию. Спе- ктрофотометрическое титрование, измерения 1H ЯМР-спектров (Рис. 8) и квантово- химическое моделирование показывают, что протонирование диазепиновых колец, происходит по атомам азота пиридинового типа, выключает эффект ICT и приводит к разгоранию интенсивности флуоресценции в 2–4 раза (Рис. 8, В). Рис. 8. Изменения в ЭСП (Б) и спектрах излучения (В) порфиразинов 13H2 и 14H2 при добавлении CF3COOH к раствору в CH2Cl2. На вставках показаны зависимости квантовых выходов флуоресценции ΦSF (А). Сравнение 1H ЯМР спектров в CDCl3 и в CF3COOH при различных температурах (Г), записанные для предшественника порфиразина 14H2. Сигналы растворителя помечены крестиком, примеси – треугольником Заключение 1. Впервые получена и охарактеризована серия трипиразиносубпорфиразинов с различными заместителями на периферии и у центрального атома бораIII. Методом рентгеноструктурного анализа установлено, что гексахлор и гексафенилзамещенные, обладая выраженными -акцепторными свойствами, образуют сольваты с бензолом за счет слабого  взаимодействия. 2. Установлено, что комбинация гексаазамещения с периферийным хлориро- ванием сильно снижает основные свойства мезо-атомов азота и увеличивает электрон- ное сродство субфталоцианинового макроцикла, (E1/2(Red) = -0,20 В (Ag/AgCl), что позволяет рассматривать гексахлоритрипиразиносубпорфиразин в качестве перспекти- вного акцептора для органической электроники. 3. Установлено, что для субфталоцианинов и трипиразиносубпорфиразинов, соде- ржащих у атома бора 4-диметиламинофеноксигруппу, проявляется эффект фотоинду- цированного переноса электрона (PET), выключение которого в слабокислых средах приводит к разгоранию флуоресценции. Показаны перспективы их применения как pH-сенсоров in vitro. 4. Впервые получены порфиразиноиды с аннелированным 6H-1,4-диазепиновым фрагментом и элементами 13 группы в качестве центрального атома. Показано, что 1,4-диазепиновый цикл сконденсированный с несимметричным октафтордибензо- субпорфиразином бора(III) существует в форме 1Н-таутомера, а не в 6Н-форме, типичной для арилзамещенных тетра(1,4-диазепино)порфиразинов, содержащих Al, Ga, In и другие центральные атомы. 5. С использованием методов РСА, 1Н ЯМР спектроскопии изучено строение 6,7- дигидро-1H-1,4-диазепин-2,3-дикарбонитрилов и установлено, что атомы азота как имино (-N=), так и амино (-NH-) групп включены в сопряженную квазиароматическую систему и могут рассматриваться как пиридиновый и пиррольный, соответственно. Показано, что в кислой среде протонируется только атом азота имино-группы. 6. Впервые получены порфиразины с аннелированными 6,7-дигидро-1H-диазепи- новыми фрагментами и установлено, что протонирование атомов азота иминогрупп диазепиновых колец, наблюдаемое в слабокислых средах, приводит к выключению эффекта внутримолекулярного переноса заряда (ICT). Это позволяет рассматривать данные макроциклы, поглощающие в ближней ИК области, как перспективные фотосе- нсибилизаторы и pH-чувствительные флуоресцентные материалы. Рекомендации и перспективы дальнейшей разработки темы Результаты выполненной работы открывают перспективы для синтеза серии пофиразиноидов с аннелированными пиразиновыми и 1,4-диазепиновыми кольцами, дальнейшего изучения их биологических свойств на клеточных культурах in vitro и исследования их фотоэлектрических свойств. Рекомендуется расширить линейку пиразин-2,3-дикарбонитрилов и 1,4-диазе- пин-2,3-дикарбонитрилов для направленного синтеза на их основе соответствующих (суб)порфиразинов симметричного и несимметричного строения. Актуально исследо- вание их физико-химических свойств, определяющих пути практического применения данного семейства макрогетероциклов.

Актуальность темы:
Важнейшей задачей современной органической химии является синтез и исследование новых органических соединений для создания на их основе функциональных материалов и устройств, позволяющих улучшить качество жизни, безопасность и здоровье человека. Перспективными и активно исследуемыми соединениями являются фталоцианины (Pc), а также их гетероциклические аналоги порфиразины (Pz), содержащие вместо бензольных колец ароматические электрон-дефицитные пятичленные халькогендиазольные, шестичленные пиразиновые и квазиароматические семичленные 1,4-диазепиновые кольца. Данные красители, имеющие макроциклическую природу, мультифункциональны, благодаря своим уникальным особенностям. Во-первых, внимание исследователей привлекают их спектрально-люминесцентные свойства, как первооснова для создания препаратов для фотодинамической терапии онкологических заболеваний, сенсоров для изучения внутриклеточной кислотности (pH-сенсоры). Во- вторых, их электроно-донорные и электроно-акцепторные свойства, позволяющие создавать полупроводники как p-, так и n-типа для устройств органической фотовольтаики (OPVs). Поиск оптимальной донорно- акцепторной комбинации в архитектуре фотовольтаических ячеек для достижения максимума преобразования солнечной энергии является достаточно актуальной проблематикой.
Важной структурной особенностью тетрапиррольных порфиразиновых макроциклов является возможность тонкой настройки физико-химических параметров под конкретные применения за счет периферической функционализации макроцикла, а также его сокращения до трипиррольного – трехлепесткового субпорфиразина (sPz). Введение заместителей в бензольные кольца Pc, и, особенно, замещение атомов углерода в их составе на атомы азота, приводит к сильному изменению спектральных, координационных, редокс-свойств, влияет на их сенсорные свойства и увеличивает их сродство к электрону. Предполагается, что эффект усиления электроно-акцепторных свойств будет присутствовать и в случае перехода от сокращенных конусообразных Pc – субфталоцианинов (sPc) к их азааналогам – пиразин конденсированным субпорфиразинам бораIII (Pyz3sPz). Однако, до настоящего момента в литературе имелась лишь одна публикация, посвященная синтезу и характеристике циклоалкил производных Pyz3sPz [1], а возможности их использования в качестве pH-сенсоров и полупроводников n-типа для OPVs не исследовались.
Расширение шестичленных пиразиновых колец до семичленных 1,4- диазепиновых фрагментов у соответствующих (s)Pz также является инструментом тонкой настройки физико-химических свойств целевого макроцикла. На протяжении последних 20-ти лет порфиразины с аннелированными диазепиновыми фрагментами активно изучались как потенциальные материалы для сфер нелинейной оптики, органической электроники и медицины. Особое внимание исследователей по данному направлению было сфокусировано на изучении 6H-1H таутомеризма диазепинового кольца или на модификации данного гетероцикла путем полного гидрирования связи -C=N- (тетрагидро-производные), что, в свою очередь, оказывало сильное влияние на спектрально-люминесцентные свойства тетрадиазепинопорфиразинов (TDzPz). Однако, субпорфиразины, содержащие аннелированные 1,4-диазепиновые кольца, и порфиразины с их частично гидрированными производными до настоящего времени не были известны.
Таким образом, анализ современного состояния исследований показывает, что научно обоснованным и актуальным как с фундаментальной, так и с практической точек зрения, является развитие путей структурной модификации макроциклов фталоцианинового типа с целью поиска новых соединений, перспективных для применения в качестве флуоресцентных сенсоров, фотосенсибилизаторов, а также акцепторов для органической электроники.
Цель работы: дизайн и синтез новой серии флуорофоров на основе пиразин-аннелированных субпорфиразинов бораIII с различными заместителями на периферии и в аксиальном положении, а также диазепин- аннелированных порфиразиноидов, в том числе с частично гидрированной – C=N-связью в 1,4-диазепиновом фрагменте, содержащих в качестве центрального атома элемент 13-й группы периодической системы (B-Al-Ga- In).
Для достижения поставленной цели в работе предполагалось решить следующие задачи:
1. разработать методы синтеза новых соединений и охарактеризовать их с помощью широкого набора спектральных методов и метода рентгеноструктурного анализа;
2. выявить влияние азазамещения в бензольных кольцах субфталоцианинов и частичного гидрирования периферических колец в диазепин-аннелированных порфиразинах на особенности их строения и физико-химических свойств.
3.впервые изучить влияние кислотности среды на спектрально люминесцентные свойства полученных макрогетероциклических соединений для оценки возможности их использования в качестве pH- сенсоров;
4.исследовать окислительно-восстановительные свойства азааналогов субфталоцианинов и оценить возможность их использования в качестве материалов, обладающих свойствами n-проводимости для нужд органической фотовольтаики.
Научная новизна:
В работе впервые осуществлены и оптимизированы методики синтеза серии трипиразиносубпорфиразинов бораIII с различными заместителями на периферии и в аксиальном положении, а также впервые получен субпорфиразин, содержащий в своем составе 1,4-диазепиновый фрагмент. Синтезированы новые порфиразины с аннелированными 6H- и 6,7-дигидро- 1H-1,4-диазепиновыми кольцами, а также их металлопроизводные с MgII, AlIII, GaIII и InIII в качестве центрального атома. Для полученных соединений изучено влияние строения макроцикла и периферических гетероциклических фрагментов на спектрально-люминесцентные, кислотно-основные и электрохимические свойства. Структура двух пиразин-аннеированных субпорфиразинов и динитрильного предшественника 6,7-дигидро-1H-1,4- диазепинопорфиразинов установлена методом рентгеноструктурного анализа монокристаллов. Обнаружено проявление pH-управляемых эффектов фото- индуцированного переноса элеткрона (PET) для субфталоцианинов и их пиразиновых аналогов с 4-диметиламинофеноксигруппами у атома бора и внутримолекулярного переноса заряда (ICT) для порфиразинов с 6,7-дигидро- 1H-1,4-диазепиновыми фрагментами.
Теоретическая и практическая значимость:
Гексахлорзамещенный трипиразиносубпорфиразин имеет повышенное электронное сродство по сравнению со всеми известными представителями субфталоцианинового семейства и может рассматриваться как новый акцепторный материал нефуллеренового типа в архитектуре фотовольта- ических ячеек. Аксиально модифицированные субфталоцианины и три- пиразиносубпорфиразины обладают повышенной чувствительностью к слабокислым средам как в органическом растворителе, так и в водно- буферных растворах, что определяет перспективы использования данного типа макроциклов в качестве PET управляемых pH-сенсоров для флуоресцентной диагностики. Порфиразины с аннелированными 6,7-дигидро- 1H-1,4-диазепиновыми фрагментами поглощают в ближней ИК-области (в диапазоне терапевтического окна), проявляют ICT эффекта и могут рассматриваться в качестве потенциальных фотосенсибилизаторов с функцией pH-сенсора.
Методология и методы исследования:
В основе методологии настоящей работы лежит изучение реакций циклотри- и тетрамеризации пиразин-, 6H-1,4- и 6,7-дигидро-1H-1,4-диазепин- 2,3-дикарбонитрилов и их использования для синтеза соответствующих порфиразиноидов. В качестве методов исследования органических со- единений использованы: рентгеноструктурный анализ монокристаллов, масс- спектрометрия с лазерной ионизацией, одно-и двумерная 1Н, 11В, 13С, 19F ЯМР- спектроскопия, ИК-спектроскопия (таблетки с KBr и метод НПВО), УФ- видимая и флуоресцентная спектроскопия и др. Квантово-химические расчеты некоторых молекул были выполнены методом DFT с гибридным функци- оналом B3LYP с использованием трехэкспоненциальных электронно-поляри- зованных валентных базисов и методом TD DFT (функционал B3LYP с бази- сным набором pcseg-2).
Положения, выносимые на защиту:
1. Разработка методов синтеза новых трипиразиносубпорфиразинов и оптимизация методов введения фенольных групп в аксиальное положение субфталоцианинов и их гексаазааналогов.
2. Синтез и характеристика новых порфиразинов с аннелированными 6H- и 6,7-дигидро-1H-1,4-диазепиновыми кольцами.
3. Изучение специфического явления переключения фотоиндуцирован- ного переноса элеткрона (PET) в кислых или основных средах в органическом растворителе и в водно-буферных растворах для ряда трипиразиносубпорфиразинов и субфталоцианинов с 4-диметиламино- и 4-гидроксифенокси группами в аксиальном положении, а также эффекта переключения внутримолекулярного переноса заряда (ICT) в слабокислых средах для ряда порфиразинов с аннелированными 6,7- дигидро-1H-1,4-диазепиновыми кольцами.
4. Выявление закономерностей «структура-свойство» при сравнении спектрально-люминесцентных, кислотно-основных, окислительно-вос- становительных свойств субфталоцианинов и трипиразиносубпо- рфиразинов.
Степень достоверности и апробация результатов работы:
Степень достоверности результатов исследований подтверждается воспроизводимостью экспериментальных данных, полученных с использо- ванием современного комплекса оборудования (работоспособность приборов была проверена с использованием соответствующих стандартных процедур), физико-химических методов анализа, а также публикациями основных экспериментальных данных в рецензируемых журналах (Q1 и Q2), индексируемых в Scopus и WoS.
Результаты исследований были представленны и обсуждались на 10-й Международной конференции по порфиринам и фталоцианинам (ICPP-10, г. Мюнхен, Германия, 2018 год), на VIII Международной конференции по физической химии краун-соединений, порфиринов и фталоцианинов (г. Туапсе, 2020 год), на 11-й Международной конференции по порфиринам и фталоцианинам (ICPP-11, дистанционно, 2021 год), на 8-м Международном симпозиуме «Органическая электроника высококоррелированных молеку- лярных систем» (г. Суздаль, 2018 год), на XIII Международной конференции «Синтез и применение порфиринов и их аналогов» (г. Кострома, 2019 год), на XI Международной школе-конференции молодых ученых по химии порфиринов и их аналогов (г. Иваново, 2017 год), на Всероссийской школе- конференции молодых ученых «Фундаментальные науки – специалисту нового века». Студенческая научная конференция «Дни Науки в ИГХТУ» (г. Иваново, 2018 год), на Всероссийской школе-конференции молодых ученых “Фундаментальные науки – специалисту нового века» с международным участием (г. Иваново, 2020 год).
Настоящая работа выполнена в соответствии с индивидуальным планом научной работы, выполняемой на кафедре органической химии ИГХТУ и при поддержке стипендии Президента РФ для обучения за рубежом в 2018-2019 учебном году (приказ No 410), грантов РФФИ (No 19-33-90276 и No 20-53- 26004) и РНФ (No 17-13-01522).
Публикации.
По материалам диссертации опубликовано 5 статей в рецензируемых научных изданиях, рекомендованных ВАК по специальности 02.00.03 – органическая химия, входящих в перечень Scopus и Web of Science, и 8 тезисов докладов на конференциях различного уровня.
Личный вклад автора состоит в непосредственном участии на всех этапах работы – в постановке цели и задач работы, литературном обзоре по теме исследования, планировании, выборе методологии и проведении экспериментов, обсуждении полученных результатов.
Объем и структура диссертации:
Диссертация изложена на 199 страницах машинописного текста и состоит из введения, литературного обзора, экспериментальной части, обсуждения результатов, заключения и приложения. Работа содержит 30 схем, 78 рисунков, 14 таблиц, список литературы, включающий 252 наименования. Благодарности:
Выражаю глубокую благодарность своему научному руководителю д.х.н., профессору Павлу Анатольевичу Стужину за предоставленную возможность работать над интересными идеями и проектами, за всестороннюю помощь и поддержку на всех этапах реализации данной работы; всему коллективу кафедры органической химии ИГХТУ и всем студентам лаборатории синтеза и исследования порфиразиноидов; к.х.н., с.н.с. Г.Л. Пахомову (Институт физики микроструктур РАН, отдел технологии наноструктур и приборов) за ценные и мудрые советы; доценту В. Новаковой и профессору П. Зимчику (Факультет Фармации в Градец-Кралове, Карлов Университет, Чешская Республика, лаборатория азафталоцианинов) за помощь в проведении фотофизических измерений; сотрудникам Кафедры аналитической химии ИГХТУ – к.х.н., доценту В.В. Черникову и к.х.н., н.с. О.Н. Крутовой; к.х.н., доценту Кафедры физики ИГХТУ Ю.А. Жабанову за проведение квантово- химических расчетов; к.ф.-м.н., доценту Н.В. Сомову (ННГУ, Кафедра кристаллографии и экспериментальной физики) за проведение рентгено- структурного анализа монокристаллов; к.ф.-м.н., с.н.с. И.А. Ходову (ИХР РАН), к.х.н., н.с. Г.А. Киракосян (ИОНХ РАН), д.х.н., в.н.с. Кафедры ХиТВМС ИГХТУ В.В. Александрийскому и доценту И. Кунешу (Факультет Фармации в Градец-Кралове, Карлов Университет, Чешская Республика, Кафедра неорганической и органической химии) за регистрацию ЯМР-спектров; сотрудникам ЦКП ИГХТУ за выполнение масс-спектрометрического анализа.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Читать

    Публикации автора в научных журналах

    Subphthalocyanine azaanalogues–Boron (III) subporphyrazines with fused pyrazine fragments
    P.A. Stuzhin, I.A. Skvortsov, Y.A. Zhabanov, N.V. Somov, O.V.Razgonyaev, I.A. Nikitin, O.I. Koifman // Dyes and Pigments. - 2- V. - P. 888
    pH-sensitive subphthalocyanines and subazaphthalocyanines
    I.A.Skvortsov, P. Zimcik, P.A Stuzhin, V. Novakova // Dalton Transactions. - 2- V. - N. - P. 11090-11
    Porphyrazines with annulated diazepine rings. Near-IR-absorbingtetrakis (6, 7-dihydro-1 H-1, 4-diazepino) porphyrazines and effects of acid solvation on their spectral properties
    I.A. Skvortsov, A.M. Fazlyeva, I.A. Khodov, P.A. Stuzhin // NewJournal of Chemistry. - 2- V. - N. - P. 18362-18
    Subphthalocyanine-type dye with enhanced electron affinity: Effect of combined azasubstitution and peripheral chlorination
    I.A. Skvortsov, U.P. Kovkova,Y.A. Zhabanov, I.A. Khodov, N.V. Somov, G.L. Pakhomov, P.A. Stuzhin // Dyes andPigments. - 2- V.
    tert-Butyl substituted hexaaza subphthalocyanine: Synthesis, isolation of C1 and C 3 regioisomers and their spectral-luminescence study
    A.S. Panteleev, I.A.Skvortsov, O.I. Koifman, P.A. Stuzhin // J. Porphyrins Phthalocyanines. - 2Тезисы докладов на конференциях

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Ксения М. Курганский Государственный Университет 2009, Юридический...
    4.8 (105 отзывов)
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитыв... Читать все
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитывать все требования и пожелания.
    #Кандидатские #Магистерские
    213 Выполненных работ
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    user1250010 Омский государственный университет, 2010, преподаватель,...
    4 (15 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    21 Выполненная работа
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Евгений А. доктор, профессор
    5 (154 отзыва)
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - ... Читать все
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - по социальной работе.
    #Кандидатские #Магистерские
    260 Выполненных работ
    Александра С.
    5 (91 отзыв)
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повы... Читать все
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повышении уникальности текста и оформлении библиографических ссылок по ГОСТу.
    #Кандидатские #Магистерские
    132 Выполненных работы
    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа

    Другие учебные работы по предмету

    Разработка новых подходов к азетидиноновым и пирролидиновым блокам, синтез карбапенемов
    📅 2022год
    🏢 ФГБНУ Уфимский федеральный исследовательский центр Российской академии наук
    3-Замещенные 2Н-хромен-2-оны в синтезе кислород-, азот-, серасодержащих гетероциклических гибридов
    📅 2022год
    🏢 ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского»