Технология получения высокоэмиссионных материалов на основе гексаборида лантана в режиме самораспространяющегося высокотемпературного синтеза при механоактивации шихты

Кузнецов, Михаил Сергеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

ВВЕДЕНИЕ ……………………………………………………………………………………………….. 4

Глава 1. Эмиссионные материалы на основе гексаборида лантана: свойства,
синтез, применение ………………………………………………………………………………….. 12

1.1 Эмиттеры установок, генерирующих конденсированные потоки
излучения ……………………………………………………………………………………………… 12

1.2 Эмиссионные материалы на основе боридов …………………………………….. 20

1.3 Технология получения гексаборида лантана …………………………………….. 26

1.4 Самораспространяющийся высокотемпературный синтез, как
технология для получения гексаборида лантана …………………………………….. 32

1.5 Постановка цели и задач исследования …………………………………………….. 36

Глава 2. Характеристика исходных материалов, методы исследования и
техника эксперимента, методология работы ……………………………………………… 38

2.1. Характеристика исходных материалов…………………………………………….. 38

2.2. Оборудование и режимы СВ-синтеза гексаборида лантана ………………. 38

2.2.1. Технология СВС для синтеза гексаборида лантана …………………….. 38

2.3. Методы исследования свойств материалов на основе LaB6, полученных
в режиме СВС ……………………………………………………………………………………….. 43

2.3.1. Методика определения распределения частиц по размерам ………… 43

2.3.2. Методика определения площади удельной поверхности
компонентов шихты реагентов ……………………………………………………………. 46

2.3.3. Методика рентгенофазового анализа …………………………………………. 53

2.3.4. Электронно-спектрометрический анализ ……………………………………. 57

2.4. Методология работы…………………………………………………………………….. 58

Глава 3. Физико-химические процессы синтеза гексаборида лантана ………… 60
в СВС-режиме ………………………………………………………………………………………….. 60

3.1. Влияние плотности исходной системы на синтез гексаборида лантана в
СВС-режиме …………………………………………………………………………………………. 62

3.2. Влияние температуры предварительного подогрева образцов на синтез
гексаборида лантана ……………………………………………………………………………… 67

3.3. Влияние механической активации шихты на синтез гексаборида
лантана …………………………………………………………………………………………………. 72

3.3.1. Процессы, протекающие в шихте при механической обработке …. 74

3.3.2.Синтез гексаборида лантана из механически активированной шихты
…………………………………………………………………………………………………………… 86

3.4. Физико-химические характеристики гексаборида лантана, полученного
методом СВС ………………………………………………………………………………………… 92

Глава 4. Технология получения высокоэмиссионных материалов ……………… 97

СВС-методом …………………………………………………………………………………………… 97

4.1. Методики определения эмиссионных свойств катодных материалов .. 97

4.2. Эмиссионные свойства гексаборида лантана, полученного методом
СВС ………………………………………………………………………………………………………. 99

4.3. Технология получения гексаборида лантана методом СВС для
использования в ускорительной технике ……………………………………………… 104

Заключение ……………………………………………………………………………………………. 109

Основные выводы ………………………………………………………………………………….. 111

Список литературы ………………………………………………………………………………… 113

Актуальность темы
В настоящее время устройства, генерирующие конденсированные
потоки электронов, находят все большее применение в различных областях
науки и техники. Повышение эффективности работы таких устройств во
многом связано с использованием в качестве катодов новых, более
совершенных материалов, способных работать в жестких условиях
эксплуатации. В большинстве случаев стабильность работы катода
определяется выбором материала. Среди большого количества материалов,
использующихся в катодной технике, необходимо выделить гексаборид
лантана, обладающий более низкой работой выхода и высокой температурой
плавления, а также повышенной устойчивостью в агрессивных средах по
сравнению с традиционными катодными материалами.
Для получения лантан-борсодержащих материалов с необходимым
набором физико-химических характеристик и функциональных свойств
параметры исходных компонентов должны быть тщательно оптимизированы.
Существует достаточно большое количество способов получения
гексаборида лантана, которые сопровождаются сложными технологическими
процессами получения и дальнейшей обработки изделия.
Метод самораспространяющегося высокотемпературного
синтеза (СВС) является одним из предпочтительных для синтеза катодных
материалов, благодаря ряду преимуществ: высокая чистота конечного
продукта, низкое энергопотребление, возможность управления процессом на
всех этапах синтеза. Среди эффективных способов управления реакциями
СВ-синтеза выделяют способы управления на стадии подготовки шихты. На
базе Томского политехнического университета проводились исследования по

Для достижения поставленной цели и решения сформулированных задач,
согласно принятой методологии работы по созданию высокоэмиссионных
материалов на основе гексаборида лантана в режиме технологического горения, с
заданным фазовым составом и обладающих необходимыми эмиссионными
характеристиками, проведены следующие исследования:
 осуществлен анализ способов получения гексаборида лантана,
проанализирована возможность получения гексаборида лантана в режиме
самораспространяющегося высокотемпературного синтеза;
 рассмотрены и реализованы основные стадии управления СВ-
синтезом при синтезе гексаборида лантана из смеси оксида лантана и бора;
 рассмотрены закономерности формирования морфологического
состава шихты при механической активации, термодинамические особенности
протекания реакции из механически активированной шихты;
 изучены основные физико-химические процессы, протекающие при
синтезе гексаборида лантана, структурнофазовые особенности полученных
материалов;
 осуществлена разработка рациональных технологических приемов
получения высокоэмиссионных материалов на основе гексаборида лантана в
режиме технологического горения.
В ходе исследования установлено:
 для получения монофазного продукта гексаборида лантана,
синтезированного в режиме технологического горения, необходимо использовать
дополнительные методы управления реакцией синтеза на стадии подготовки
шихты;
 влияние процесса механоактивации на параметры шихты исходных
компонентов: среднечисленный размер частиц в зависимости от режима
обработки может быть уменьшен в 6 раз до 2,5 мкм, удельная поверхность в
результате самопроизвольного гранулирования уменьшается на порядок через 15
мин обработки;
 изменяются параметры протекания реакции технологического горения
после механической активации: снижается температура инициирования реакции
на 100 К (с 830 К до 730 К), при этом происходит увеличение максимальной
температуры реакции на 450 К (с 1500К до 1950К), увеличивается скорость
протекания реакции, что в свою очередь позволяет достичь фазовой чистоты
продукта до 95 % при среднечисленном размере частиц 2,5 мкм.
 эмиссионные свойства катодов, полученных на основе гексаборида
лантана, синтезированного в СВ-режиме. Улучшенные характеристики катодов
позволят получать более стабильные электронные потоки, а также продлить
ресурс работы катодов по сравнению с традиционными катодами на основе
металлов и графита.
Таким образом, полученные результаты по синтезу гексаборида лантана в
режиме самораспространяющегося высокотемпературного синтеза с
использованием механической активации на стадии подготовки шихты могут
быть рекомендованы для получения всей группы высших боридов
редкоземельных металлов в режиме технологического горения для обеспечения
необходимых эксплуатационных характеристик.
Перспективы развития работы заключаются в более глубоком исследовании
механических и эмиссионных характеристик гексаборида лантана в узлах
генерации электронов при различных режимах работы, исследовании
возможности улучшении эксплуатационных параметров гексаборида лантана по
разработанной технологии в составе сложных систем и расширении способов
управления свойствами эмиссионных материалов с помощью добавок.
Основные выводы

1. Синтез гексаборида лантана методом самораспространяющегося
высокотемпературного синтеза на основе смеси реагентов La2O3 (65 масс.%) и В
(35 масс.%) без применения дополнительных способов изменения начальных
параметров шихты не представляется возможным ввиду низкого содержания
целевой фазы в синтезированном образце (25 масс.%), что не позволяет
достигнуть необходимых рабочих параметров катодного узла (стабильность
пучка, эмиссионная плотность тока).
2. Механическая активация обеспечивает снижение температуры
инициирования реакции горения на 100 К в системе La2O3-B по сравнению с
использованием других рассмотренных способов изменения термодинамических
параметров реакции горения (изменение плотности при изменении величины
прессования исходных образцов и предварительный подогрев) за счет увеличения
удельной поверхности компонентов шихты до значений около 5,5 м2/г.
3. Зависимость среднечисленного размера частиц шихты от режимов
механической активации носит немонотонный характер и достигает своего
минимального значения (2,5 мкм) при величине 55g. Дальнейшая интенсификация
обработки шихты приводит к ухудшению реакционной способности системы,
вследствие увеличения среднечисленного значения за счет агломерации частиц и
локального протекания химических реакций в процессе механоактивации.
4. Использование механической активации шихты позволяет достигнуть
температуры синтеза более 1800 К, что позволяет получить практически
монофазный продукт с содержанием целевой фазы гексаборида лантана 95
масс.%, что не представляется возможным при использовании традиционных
способов управления процессом СВС.
5. Метод самораспространяющегося высокотемпературного синтеза с
использованием механической активации шихты обеспечивает достижение
улучшенных характеристик микроострий поверхности катода (поверхностная
плотность 4·106см-2 и высота микроострий 5-15 мкм), обеспечивающие
увеличение ресурса катода и однородность электронного пучка.
6. Метод самораспространяющегося высокотемпературного синтеза для
получения катодных материалов на основе гексаборида лантана позволяет
повысить эффективность использования установок, генерирующих электронные
пучки. В экспериментах было установлено увеличение величины выведенной из
катодного узла энергии на 12-17% и стабильности электронного пучка на 15% по
сравнению с традиционными односоставными катодами на основе металлов и
графита.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ

    Другие учебные работы по предмету