Анализ динамических процессов с использованием методов сегментации спутниковых изображений высокого разрешения

Сальникова Мария Владимировна
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Рассматривается задача анализа динамических изменений количества зеленых насаждений на спутниковых снимках высокого пространственного разрешения. Рассмотрены основные подходы к анализу спутниковых изображений, а также рассмотрены основные методы сегментации и эффективность их применения к спутниковых изображениям. Предложен метод сегментации спутниковых изображений высокого разрешения для анализа динамических процессов, включающий в себя комбинацию различных методов сегментации, таких как метод сдвига среднего значения, метод кластеризации k-means, пороговый метод. Создан программный продукт, решающий задачу анализа динамических изменений количества зеленых насаждений на спутниковых изображениях. Приводятся результаты экспериментов на реальных изображениях, подтверждающие эффективность предложенного метода.

Введение …………………………………………………………………………………………………………………………3
Постановка задачи ………………………………………………………………………………………………………5
1. Обзор литературы …………………………………………………………………………………………………..9
1.1 Основные направления методов определения местности на
спутниковых изображениях ………………………………………………………………………………..9
1.1.1 Спектральный анализ…………………………………………………………………..9

1.1.2 Текстурные методы …………………………………………………………………… 10

1.1.3 Смешанная обработка ………………………………………………………………. 11

1.2 Общие методы сегментации изображений и их применение к
спутниковым изображениям …………………………………………………………………………… 13
1.2.1 Пороговые методы. Адаптивный порог ……………………………… 14

1.2.2 Метод водоразделов ………………………………………………………………….. 14

1.2.3 Выделение границ при помощи оператора Лапласа………. 15

1.2.4 Метод сдвига среднего значения ………………………………………….. 16

2. Выбор методов решения …………………………………………………………………………………… 18
2.1 Предобработка. Метод сдвига среднего значения …………………. 18
2.2 Кластеризация. Метод k-средних …………………………………………………. 20
2.3 Выделение зеленых насаждений. Пороговый метод …………….. 21
3. Создание системы анализа динамического изменения степени
озеленения местности ……………………………………………………………………………………………. 22
3.1 Реализация алгоритма ……………………………………………………………………… 23
3.2. Тестирование ……………………………………………………………………………………… 29
4. Заключение ……………………………………………………………………………………………………………. 33
Выводы ………………………………………………………………………………………………………………………… 34
Список литературы …………………………………………………………………………………………………. 35

На сегодняшний день спутниковые изображения используются в
различных сферах деятельности. С каждым годом растет число
запускаемых спутников, обеспечивающих поставку изображений
высокого пространственного разрешения [2]. С улучшением качества
снимков расширяются и возможности их использования. Однако,
большим препятствием к широкому использованию спутниковых
снимков является сложность, а порой и отсутствие специального
инструментария, подходящего для конкретной задачи. Кроме того, важно
уметь не только получать информацию с таких изображений, но и
заниматься последующим анализом и обработкой этих данных. Много
важной информации можно получить, например, наблюдая за
процессами, которые происходят со временем на определенной
местности. Таким образом, необходимо уметь анализировать
динамические процессы, происходящие на конкретной территории.
Данная проблема может затрагивать многие отрасли современной науки,
так как информация, получаемая со спутниковых изображений, также
велика и разнообразна.
К тому же особенно остро в последние несколько лет стоит
проблема экологии, а также проблема недостаточного озеленения в
больших городах. С ростом городов, промышленности, увеличением
уровня автомобилизации происходит масштабная вырубка деревьев в
городах и уничтожение других зеленых насаждений. Но необходимо
понимать, что все зеленые насаждения в такой среде выполняют не
только эстетическую функцию, но и играют огромную санитарно-
гигиеническую роль. Зеленые насаждения выполняют санитарно-
гигиенические функции, такие как пыле- и газопоглощение, химическая
и биологическая очистка городского воздуха, смягчение микроклимата,
снижение уровня шума и т.п. Они создают благоприятные условия для
кратковременного отдыха горожан, служат местами психологической и
эмоциональной разгрузки, играют важную роль в создании
архитектурно-художественного облика города, т.е. являются активным
градоформирующим фактором [4]. К тому же, зачастую особое внимание
уделяют конкретно вырубке лесов, тогда как в условиях большого города
уничтожение даже нескольких деревьев или «зеленой» зоны с травой и
кустарниками в совокупности может привести к ухудшению
экологической ситуации в городе.
Именно поэтому в качестве примера динамического процесса,
взятого для распознавания со спутниковых изображений высокого
разрешения, а также для дальнейшего анализа данного процесса было
выбрано изменение количества зеленых насаждений, т.е. озеленение
городов.

1. Gurudatta V., Anuja A. K-Means Clustering Algorithm with Color-
based Thresholding for Satellite Images // International Journal of Computer
Applications (0975 – 8887) Volume 105 – No. 11, pp 17-20, November 2014.
2. Пестунов И. А., Мельников П. В. Информативность систем
текстурных признаков для классификации спутниковых изображений с
высоким пространственным разрешением // Интерэкспо Гео-Сибирь.
2012. №4.
3. Санаев И. В. Роль зеленых насаждений в создании оптимальной
городской среды // Вестник МГУЛ – Лесной вестник. 2006. №6.
4. Санаева Т. С. Деградация травянистой растительности на
объектах озеленения города // Вестник МГУЛ – Лесной вестник. 2012.
№1 (84).
5. Пестунов И.А., Бериков В.Б., Синявский Ю.Н. Сегментация
многоспектральных изображений на основе ансамбля
непараметрических алгоритмов кластеризации // Вестник Сибирского
Государственного аэрокосмического университета им. академика
М.Ф. Решетнева. 2010. № 5(31). С. 56-64.
6. Cheng Y. Mean shift, mode seeking, and clustering // IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1995. Vol. 17.
No. 8. P. 790-799.
7. Официальный сайт проекта Google Earth.
URL:https://www.google.com/earth/.
9. The OpenCV Reference Manual , Release 2.4.13.7
10. Wang L. Semi-supervised classification for hyperspectral imagery
based on spatial-spectral label propagation // ISPRS Journal of
Photogrammetry and Remote Sensing. – 2014. -Vol. 97. – P. 123-137.
11. Luo R. Spectral-spatial classification of hyperspectral images with
semi-supervised graph learning // SPIE Remote Sensing. – International
Society for Optics and Photonics, 2016.
12. Yang L. Semi-supervised hyperspectral image classification using
spatio-spectral Laplacian support vector machine // IEEE Geoscience and
Remote Sensing Letters. – 2014. -Vol. 11. – N. 3. – P. 651-655.
13. Wang A., Wang S., Lucieer A. Segmentation of multispectral high-
resolution satellite imagery based on integrated feature distributions //
International Journal of Remote Sensing. -2010. – Vol. 31. – N. 6. – P. 1471-
1483.
14. Plaza A., Du Q., Biouoas-Dias J. Foreword to the special issue on
spectral unmixing of remotely sensed data // IEEE Transactions on
Geoscience and Remote Sensing. 2011. Vol. 49, No. 11. P. 4103-4110.
15. Потатуркин О. И., Борзов С. М., Потатуркин А. О., Узилов С. Б.
Методы и технологии обработки мульти-и гиперспектральных данных
дистанционногозондированияЗемливысокогоразрешения//
Вычислительные технологии, №18. 2013. C. 60-67.
16. Борзов С. М., Потатуркин А. О. Сегментация спутниковых
изображенийвысокогоразрешениясучетомихструктурных
особенностей // Интерэкспо Гео-Сибирь. 2013. №1.
17. Фраленко В. П. Методы текстурного анализа изображений,
обработка данных дистанционного зондирования Земли //
Программные системы: теория и приложения, №5. 2014. С. 19–39.
18. Мицель А. А., Колодникова Н. В., Протасов К. Т.
Непараметрический алгоритм текстурного анализа аэрокосмических
снимков // Изв. Томского политехнич. университета, 2005. Т. 308, № 1, С.
65–70.
19. Кутлунин П. Е.. Методы обработки изображений с импульсным
шумом на основе алгоритма кластеризации: дис. … канд. техн. наук. 2017.
20. Путятин Е.П., Панченко Д.С. Сравнительный анализ методов
сегментации изображений. // Радиоэлектроника и информатика.–
1999.– №4(9). – С. 109–114.
21. Luus F., Salmon B., Van Den Bergh F., Maharaj B. Multiview deep
learning for land-use classification // IEEE Geosci. Remote Sens. Lett., vol. 12,
no. 12, pp. 2448-2452, 2015.
22. Rußwurm M., Körner M. Multi-Temporal Land Cover Classification
with Sequential Recurrent Encoders // ISPRS Int. J. Geo-Inf. 2018, 7, 129.
23. Samal D.R., Gedam S.S. Monitoring land use changes associated with
urbanization: An object based image analysis approach // Eur. J. Remote Sens.
2015, 48, 85-99.
24. Mekhalf M. L., Melgani F., Bazi Y., Alajlan N. Land-use classification
with compressive sensing multifeature fusion // IEEE Geosci. Remote Sens.
Lett., vol. 12, no. 10, pp. 2155-2159, 2015.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Ксения М. Курганский Государственный Университет 2009, Юридический...
    4.8 (105 отзывов)
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитыв... Читать все
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитывать все требования и пожелания.
    #Кандидатские #Магистерские
    213 Выполненных работ
    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Вики Р.
    5 (44 отзыва)
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написан... Читать все
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написание письменных работ для меня в удовольствие.Всегда качественно.
    #Кандидатские #Магистерские
    60 Выполненных работ
    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Анна С. СФ ПГУ им. М.В. Ломоносова 2004, филологический, преподав...
    4.8 (9 отзывов)
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания... Читать все
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания и проверки (в качестве преподавателя) контрольных и курсовых работ.
    #Кандидатские #Магистерские
    16 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ

    Другие учебные работы по предмету