Асинхронный электропривод клиновой задвижки на базе тиристорного регулятора напряжения

Сидоренко, Дмитрий Олегович Отделение электроэнергетики и электротехники (ОЭЭ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Объектом исследования является асинхронный электропривод клиновой задвижки на базе тиристорного регулятора напряжения. В процессе исследования проводился расчет схемы замещения асинхронного двигателя, получены статические характеристики асинхронного двигателя. Была построена имитационная модель системы ТРН-АД в программной среде MATLAB Simulink. Реализован плавный пуск, реверсирование и регулирование скорости асинхронного двигателя.

Введение………………………………………………………………………………………………………………. 11
1. Технологический процесс перекачки нефти ……………………………………………………… 13
1.1. Описание технологического процесса перекачки нефти ………………………………….. 13
1.2. Обзор задвижек………………………………………………………………………………………………. 13
1.3. Обзор электрических преобразователей для электроприводов задвижек …………. 16
2. Выбор электропривода и расчет оборудования …………………………………………………. 22
2.1. Исходные данные ………………………………………………………………………………………….. 22
2.2. Характеристики электропривода ……………………………………………………………………. 23
2.2.1. Технические характеристики ЭПЦ-20000 ………………………………………………….. 23
2.2.2. Состав электропривода ……………………………………………………………………………… 24
2.2.3. Порядок работы изделия в автоматическом режиме от электродвигателя …… 25
2.2.4. Состав электропривода ……………………………………………………………………………… 26
2.3. Расчет параметров схемы замещения асинхронного двигателя ………………………… 26
2.4. Расчет статических характеристик электродвигателя ………………………………………. 31
3. Имитационная модель ТРН-АД ……………………………………………………………………….. 34
3.1. Создание модели Системы ТРН-АД в програмнной среде MATLAB Simulink …. 34
3.2. Однофазный ТРН с управлением от генератора импульсов ……………………………… 25
3.3. Однофазный ТРН с управлением от S-Function Builder ……………………………………. 39
3.4. Создание трехфазного ТРН …………………………………………………………………………….. 43
3.5. Плавное изменение угла управления по заданному закону ………………………………. 46
3.6. Прямой пуск асинхронного двигателя …………………………………………………………….. 48
3.7. Плавный пуск асинхронного двигателя …………………………………………………………… 55
3.8. Реверсирование асинхронного двигателя с помощью системы ТРН …………………. 58
3.9. Регулирование частоты вращения асинхронного двигателя с помощью системы
ТРН-АД ………………………………………………………………………………………………………….. 61
4. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение …………… 70
4.1. Основная заработная плата исполнителей темы ………………………………………………. 87
5. Социальная ответственность ……………………………………………………………………………. 96
5.1.Правовые и организационные вопросы обеспечения безопасности …………………… 97
5.1.1. Специальные (характерные для проектируемой рабочей зоны) правовые
нормы трудового законодательства …………………………………………………………… 97
5.1.2. Организационные мероприятия при компоновке рабочей зоны ………………….. 97
5.2. Производственная безопасность ……………………………………………………………………… 98
5.2.1. Анализ потенциально возможных и опасных факторов, которые могут
возникнуть на рабочем месте при проведении исследований ……………………… 98
5.2.2. Разработка мероприятий по снижению воздействия вредных и опасных
факторов …………………………………………………………………………………………………… 99
5.3. Экологическая безопасность……………………………………………………………………….. 106
5.3.1. Анализ влияния объекта исследования на окружающую среду …………………. 106
5.3.2. Анализ влияния процесса исследования на окружающую среду ……………….. 107
5.4. Безопасность в чрезвычайных ситуациях …………………………………………………….. 107
5.4.1. Анализ вероятных ЧС, которые может инициировать объект исследований и
обоснование мероприятий по предотвращению ЧС ………………………………….. 107
5.4.2. Анализ вероятных ЧС, которые могут возникнуть при проведении
исследований и обоснование мероприятий по предотвращению ЧС …………. 109
Заключение ………………………………………………………………………………………………………. 112
Список используемой литературы ………………………………………………………………….. 115
Приложение А ………………………………………………………………………………………………….. 117

Нефтяное месторождение, как правило, расположено на достаточно
большом расстоянии от нефтеперерабатывающего предприятия. По этой
причине задача транспортировки нефтепродуктов является актуальным.
Нефть транспортируется несколькими способами: морским,
железнодорожным, автомобильным, речным и трубопроводным
транспортом. Эти способы транспорта отличают условиями эксплуатации,
пропускной способностью, техническими и экономическими показателями. У
каждого вида транспорта есть свои параметры, подходящие для перевозки
отдельной группы нефтепродуктов. Совокупность всех видов
транспортировки нефти является единой системой.
Нефтепровод – это трубопровод, который служит для прокачки нефти.
Нефтепровод является самым дешевым, надежным и прибыльным способом
транспортировки нефти и нефтепродуктов. Также этот метод является самым
экологически чистым. В России этот вид транспорта является основным. У
данного вида транспортировки есть следующие положительные качества:
нефтепровод можно проложить между любыми объектами; он является
самым коротким расстоянием между двумя объектами; нефтепровод
непрерывен, что позволяет бесперебойно доставлять нефтепродукты до
потребителей. Поэтому нет необходимости в хранилищах.
Во время работы трубопровода возникают ситуации, когда по какой-то
причине необходимо прекратить прокачку нефти по трубопроводу. Это
может быть либо запланированная остановка для планового технического
обслуживания нефтепровода, либо незапланированная остановка (например,
в случае чрезвычайной ситуации). Достичь этих целей можно с помощью
такого механизма, как задвижка. Задвижки должны располагаться по всей
длине трубопровода с определенным интервалом, и при необходимости их
можно использовать для блокировки отдельной секции трубопровода.
Учитывая тот факт, что нефтепроводы имеют большую длину,
необходимо дистанционное управление открыванием и закрытием задвижек.
Для таких целей на этом механизме установлен электропривод. Это поможет
в кратчайшие сроки совершать необходимые действия с задвижками. Это
серьезно упрощает обслуживание нефтепровода. Кроме того, с помощью
электрического привода можно быстро реагировать на чрезвычайные
ситуации. Это может значительно снизить последствия аварии на
нефтепроводе.
В работе рассмотрены динамические режимы работы электропривода
клиновых задвижек путем имитации переходных процессов в программной
среде MATLAB Simulink.
1. Технологический процесс перекачки нефти
1.1. Описание технологического процесса перекачки нефти
Нефть перемещается по трубопроводу из-за наличия разности давлений
в начале и конце трубопровода. Создают этот перепад давления насосные
станции, расположенные через каждые 70-150 км. Скорость нефти составляет
3 м/с. Внутренний диаметр нефтепровода обычно составляет от 100 до 1400
мм. Нефтепровод способен прокачать через себя 80-90 млн. тонн в год [1].
При производстве нефтепроводов используется высокопрочная сталь,
которая способна выдержать различные виды воздействий (механические,
химические и термические).
Нефтепровод может быть подземным и наземным. Преимуществом
наземного метода является простота конструкции и эксплуатации такого
нефтепровода. Кроме того, подземный нефтепровод более защищен от
внешних воздействий и, как следствие, более долговечен.
Чтобы иметь возможность выполнять ремонтные работы на любой
части трубопровода, задвижки расположены на расстоянии 10-30
километров. С помощью задвижек в случае аварии можно покрыть
отдельный участок трубопровода, что предотвратит серьезные последствия и
позволит ликвидировать этот несчастный случай.
1.2. Обзор задвижек
Задвижка представляет собой тип запорной арматуры, в которой
запирающий элемент перемещается перпендикулярно оси потока рабочей
среды [2].
Как правило, задвижка состоит из корпуса и крышки, которые
образуют полость рабочего тела. Внутри этой полости есть элемент, который
обеспечивает отключение потока жидкости – затвор. Крепление клапана к
корпусу осуществляется одним из трех способов: фланцевым, муфтой и
сваркой. Чтобы создать максимальную герметичность внутри корпуса при
закрытой задвижке, в конструкции предусмотрены «седла», к уплотнениям
которых прилегает уплотнения затвора. Движение затвора обеспечивается
штоком или шпинделем.
Задвижки бываю следующих конструкций:
1. Клиновые
Седла таких защелок расположены под углом. Затвор выполнен в виде
клина, который определяет название клиновой задвижки.
При закрытии затвор плотно входит в зазор между седлами, что
обеспечивает хорошую герметичность. Простота конструкции клиновых
задвижек позволяет использовать его в различных условиях. Кроме того,
клиновая задвижка имеет небольшое гидравлическое сопротивление, что
особенно важно при использовании в магистральных трубопроводах.
Недостатком такой конструкций является большую строительная
высота.
На рисунке 1 показано устройство клиновой задвижки.

Целью данной работы являлось построение системы управления
клиновой задвижки на базе ТРН-АД.
В первой главе был описан технологический процесс перекачки нефти,
обзор различных видов задвижек и электрических преобразователей для
электроприводов. Электроприводы позволяют управлять задвижками
дистанционно.
Во второй главе был выбран электропривод для клиновой задвижки
исходя из заданного значения давления в нефтепроводе. В данной работе был
выбран электропривод «ЭПЦ-20000», данный привод предназначен для
местного и дистанционного управления запорной арматурой магистральных
нефтепроводов. ЭПЦ-20000 комплектуется асинхронным двигателем
«ДАТЭК-350-04», параметры этого двигателя являются закрытой
информацией, в силу этого был выбран аналог АИР 160 М4. Рассмотрен
порядок работы изделия в автоматическом режиме от электродвигателя,
рассчитаны параметры для схемы замещения асинхронного двигателя. Были
получены статические характеристики электродвигателя. А именно
семейство механических характеристик и электромеханические
характеристики тока статора и ротора.
В третей главе, основываясь на результатах прошлой главы, была
построена имитационная модель системы ТРН – АД в программной среде
MATLAB Simulink. Ключевым элементом данной системы является блок «S-
Function Builder», данный блок позволяет интегрировать программный код на
языке программирования С в модель Simulink, это позволяет значительно
расширить возможности стандартной библиотеки MATLAB.
Для имитации работы асинхронного двигателя использовался блок
Asynchronous Machine SI Units из стандартной библиотеки. Параметры этого
двигателя были внесены в блок Asynchronous Machine SI Units.
Был смоделирован процесс пуска АД от сети и при помощи системы
ТРН (плавный пуск), если сравнить полученные графики можно сделать
вывод, что при плавном пуске ток и момент значительно меньше. Это
приводит к значительному увеличению ресурса электрической и
механической частей электропривода. Так же был проведен плавный пуск
двигателя под нагрузкой, можно отметить увеличение времени пуска АД.
Учитывая, что данный электропривод используется для управления
клиновой задвижкой, в MATLAB была собрана и смоделирована схема для
реверсирования АД. Были получены графики реверсирования АД, можно
сделать вывод о том, что реверс асинхронного двигателя происходит
успешно. Время необходимое на реверсирование – 0,4 секунды колебания
тока и момента при реверсе сопоставимы с пусковым током и моментом.
В модели была реализована возможность регулирования скорости с
помощью тиристорного регулятора напряжения. Это позволяет расширить
возможности применения системы ТРН-АД. Была получена нижняя граница
регулирования скорости, она равна 10 рад/с. Так же был выявлен
максимальный диапазон регулирования скорости, который равен 1:15. Была
смоделирована работа энкодера и получены графики регулирования
скорости.
В четвертой главе в процессе планирования проект был разделён на 15
этапов, которые распределены между руководителем и инженером. По
полученным данным построили календарный план проведения проекта,
выполненный на основе диаграммы Ганта.
Основной из главных частей анализа является формирование бюджета
НТП, в котором отражаются расходы на проектирование, в частности
затраты по основной заработной плате исполнителей темы – 182301 руб. и
дополнительной – 21876 руб., отчисления во внебюджетные фонды – 11417
руб., накладные расходы – 41521 руб., полный бюджет – 301329 руб.
В завершении работы была доказана ресурсоэффективность
технического проекта. Интегральный показатель ресурсоэффективности
равен 4,6. Это говорит о соответствии проекта современным требованиям в
области электротехники.
На основании вышесказанного можно утверждать о большой
практической значимости проекта и востребованности его. Принятые
решения позволяют объекту исследования успешно конкурировать на рынке
при малых денежных и временных затратах на его разработку.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа

    Другие учебные работы по предмету

    Энергосервисный договор
    📅 2018год
    🏢 Санкт-Петербургский государственный университет
    Асинхронный электропривод вентиляционной установки
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка имитационной модели системы электропитания тяжелого самолета
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Исследование энергоэффективности микроклимата тепличного комплекса
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)