Центральные меры в графах, связанных с графом Юнга

Уланова Арина Андреевна
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Пусть G = (V, E) – ориентированный граф.
Рассмотрим градуированный натуральными числами граф, каждый уровень которого –
копия множества V, а ребро с i-го уровня на (i+1)-й проводится в случае,
если между соответствующими вершинами есть путь в G. Применяя эту конструкцию
к графу диаграмм Юнга получаем градуированный граф, пути в котором соответствуют
цепочкам вложенных диаграмм Юнга. С помощью леммы Линдстрема-Гесселя-Вьенно
перечисление путей в таком графе сводится к вычислению определителей, причём это можно
делать разными способами. В ряде случаев эти определители вычисляются явно. В частности,
с помощью этого вычисления удаётся описать центральные меры, соответствующие двустрочечным диаграммам.

Содержание
1 Введение. Основные понятия 2
2 Пути в графе Юнга с прыжками из пустой диаграммы в прямоугольную 4
3 Пути в графе Юнга с прыжками из маленьких диаграмм
в прямоугольную 9
3.1 Вычисление числа путей, стартующих из двуклеточных
диаграмм……………………….. 10
3.2 Вычисление числа путей, стартующих из трехклеточных
диаграмм и некоторых четырехклеточных . . . . . . . . . . 12
4 Другой взгляд на перечисление путей с помощью опреде- лителя 15 4.1 Примеры использования строчечного определителя . . . . . 17
5 Центральные меры на графе Юнга с прыжками 20
5.1 Основныепонятия…………………… 20
5.2 Критерий вырожденности мер, порождаемых прямоуголь-
никами ………………………… 21
5.3 Центральные меры на графе прыжков двустрочечных диа-
грамм…………………………. 23

В начале мы напомним про градуированные графы и граф Юнга, а затем определим граф Юнга с прыжками.
Определение. Пусть V — некоторое (обычно счётное) множество вершин, E — множество рёбер, каждому из которых сопоставлена упорядоченная пара (u, v) ∈ V 2 вершин (разным рёбрам может соот- ветствовать одна и та же пара вершин, то есть допускаются крат- ные рёбра). Вершина u называется началом такого ребра uv, v — кон- цом, также говорим, что u — непосредственный предок v, а v — непо- средственный потомок u. Потомками u будем называть все вершины, в которые можно добраться от u, а предками все вершины, из которых можно дойти в u. Ориентированный граф G = (V,E) будем называть градуированным, если существует отображение
rank:V →Z v → |v|
такое, что |v| = |u| + 1 для любого ребра uv ∈ E(G). Величина |v| назы- вается рангом вершины v.
Разбиением числа n называется последовательность λ = (λ1, λ2, . . . , λk) целых неотрицательных чисел такая, что λ1 λ2 … λk и |λ| := i λi = n. Разбиения вида (λ1,λ2,…,λk) и (λ1, λ2, . . . , λk, 0, . . . , 0) отождествляются. Каждому разбиению λ со- ответствует ððððððððð ðððð — набор клеток (единичных квадратиков), составленных в строки длины λ1, λ2, . . . и выравненных по левому краю. В качестве примера рассмотрим соответствие диаграммам двух разбиений числа 9 в сумму 4+4+1 (рис. 1a) и в сумму 4+3+2 (рис. 1b).
a) b)
Рис. 1: Диаграммы, соответствующие разбиению числа 9
Определим ðððð ðððð (рис. 2) следующим образом: вершинами яв- ляются всевозможные диаграммы Юнга (в том числе пустая, которая
2
соответствует разбиению числа 0). Рангом диаграммы является коли- чество клеток в ней. Между диаграммами λ и μ проведено ребро, если |λ|=|μ|−1иμi λi длявсехi.
Рис. 2: Начало графа Юнга
Теперь определим ðððð ð ðððððððð для градуированного графа G. Множеством вершин теперь будет являться V (G) × {1, 2, . . .}. Назовем вершины множества Vi = V (G) × {i} — i-м уровнем графа с прыжками. Между вершинами λ ∈ Vi и μ ∈ Vi+1 в соседних уровнях проведено реб- ро, если в исходном графе G существовал путь из λ в μ (одна вершина без рёбер — это тоже путь). Полученный граф также является градуи- рованным, ранг вершин множества Vi равен i.
Для графа Юнга мы также можем определить граф Юнга с прыж- ками. Будем говорить, что диаграмма λ ððððððð в диаграмму μ и обо- значатьλ⊂μ,еслиμi λi длявсехi.Инымисловами,еслиизλвμ есть путь в графе Юнга.
Замечание. У графа Юнга с прыжками степень каждой вершины бес- конечна, но если рассмотреть индуцированный подграф на множестве диаграмм с не более чем m клетками, то степень у каждой из вершин будет конечной.
Из многих изученных градуированных графов (см. напр. [8, 12]) граф Юнга с прыжками больше всего напоминает граф Гельфанда – Цетлина, соответствующий ветвелению унитарных групп: вершины k-го уровня со- ответствуют неубывающим целочисленным последовательностям длины k, а ребро соответствует тому, что соответствующие последовательности
3

перемежаются. Но при изучении графа Юнга с прыжками возникают существенные специфические сложности, что видно из дальнейшего.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Вики Р.
    5 (44 отзыва)
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написан... Читать все
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написание письменных работ для меня в удовольствие.Всегда качественно.
    #Кандидатские #Магистерские
    60 Выполненных работ
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ

    Другие учебные работы по предмету

    Алгоритмы для динамических диаграмм Вороного
    📅 2021год
    🏢 Санкт-Петербургский государственный университет
    О локальных свойствах решений задач гидродинамики
    📅 2021год
    🏢 Санкт-Петербургский государственный университет
    Структуры комодулей на кольцах Чжоу флаговых многообразий
    📅 2021год
    🏢 Санкт-Петербургский государственный университет
    Полнота биортогональных систем для нескольких интервалов
    📅 2021год
    🏢 Санкт-Петербургский государственный университет