Центральные меры в графах, связанных с графом Юнга

Уланова Арина Андреевна
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Пусть G = (V, E) – ориентированный граф.
Рассмотрим градуированный натуральными числами граф, каждый уровень которого –
копия множества V, а ребро с i-го уровня на (i+1)-й проводится в случае,
если между соответствующими вершинами есть путь в G. Применяя эту конструкцию
к графу диаграмм Юнга получаем градуированный граф, пути в котором соответствуют
цепочкам вложенных диаграмм Юнга. С помощью леммы Линдстрема-Гесселя-Вьенно
перечисление путей в таком графе сводится к вычислению определителей, причём это можно
делать разными способами. В ряде случаев эти определители вычисляются явно. В частности,
с помощью этого вычисления удаётся описать центральные меры, соответствующие двустрочечным диаграммам.

Содержание
1 Введение. Основные понятия 2
2 Пути в графе Юнга с прыжками из пустой диаграммы в прямоугольную 4
3 Пути в графе Юнга с прыжками из маленьких диаграмм
в прямоугольную 9
3.1 Вычисление числа путей, стартующих из двуклеточных
диаграмм……………………….. 10
3.2 Вычисление числа путей, стартующих из трехклеточных
диаграмм и некоторых четырехклеточных . . . . . . . . . . 12
4 Другой взгляд на перечисление путей с помощью опреде- лителя 15 4.1 Примеры использования строчечного определителя . . . . . 17
5 Центральные меры на графе Юнга с прыжками 20
5.1 Основныепонятия…………………… 20
5.2 Критерий вырожденности мер, порождаемых прямоуголь-
никами ………………………… 21
5.3 Центральные меры на графе прыжков двустрочечных диа-
грамм…………………………. 23

В начале мы напомним про градуированные графы и граф Юнга, а затем определим граф Юнга с прыжками.
Определение. Пусть V — некоторое (обычно счётное) множество вершин, E — множество рёбер, каждому из которых сопоставлена упорядоченная пара (u, v) ∈ V 2 вершин (разным рёбрам может соот- ветствовать одна и та же пара вершин, то есть допускаются крат- ные рёбра). Вершина u называется началом такого ребра uv, v — кон- цом, также говорим, что u — непосредственный предок v, а v — непо- средственный потомок u. Потомками u будем называть все вершины, в которые можно добраться от u, а предками все вершины, из которых можно дойти в u. Ориентированный граф G = (V,E) будем называть градуированным, если существует отображение
rank:V →Z v → |v|
такое, что |v| = |u| + 1 для любого ребра uv ∈ E(G). Величина |v| назы- вается рангом вершины v.
Разбиением числа n называется последовательность λ = (λ1, λ2, . . . , λk) целых неотрицательных чисел такая, что λ1 λ2 … λk и |λ| := i λi = n. Разбиения вида (λ1,λ2,…,λk) и (λ1, λ2, . . . , λk, 0, . . . , 0) отождествляются. Каждому разбиению λ со- ответствует ððððððððð ðððð — набор клеток (единичных квадратиков), составленных в строки длины λ1, λ2, . . . и выравненных по левому краю. В качестве примера рассмотрим соответствие диаграммам двух разбиений числа 9 в сумму 4+4+1 (рис. 1a) и в сумму 4+3+2 (рис. 1b).
a) b)
Рис. 1: Диаграммы, соответствующие разбиению числа 9
Определим ðððð ðððð (рис. 2) следующим образом: вершинами яв- ляются всевозможные диаграммы Юнга (в том числе пустая, которая
2
соответствует разбиению числа 0). Рангом диаграммы является коли- чество клеток в ней. Между диаграммами λ и μ проведено ребро, если |λ|=|μ|−1иμi λi длявсехi.
Рис. 2: Начало графа Юнга
Теперь определим ðððð ð ðððððððð для градуированного графа G. Множеством вершин теперь будет являться V (G) × {1, 2, . . .}. Назовем вершины множества Vi = V (G) × {i} — i-м уровнем графа с прыжками. Между вершинами λ ∈ Vi и μ ∈ Vi+1 в соседних уровнях проведено реб- ро, если в исходном графе G существовал путь из λ в μ (одна вершина без рёбер — это тоже путь). Полученный граф также является градуи- рованным, ранг вершин множества Vi равен i.
Для графа Юнга мы также можем определить граф Юнга с прыж- ками. Будем говорить, что диаграмма λ ððððððð в диаграмму μ и обо- значатьλ⊂μ,еслиμi λi длявсехi.Инымисловами,еслиизλвμ есть путь в графе Юнга.
Замечание. У графа Юнга с прыжками степень каждой вершины бес- конечна, но если рассмотреть индуцированный подграф на множестве диаграмм с не более чем m клетками, то степень у каждой из вершин будет конечной.
Из многих изученных градуированных графов (см. напр. [8, 12]) граф Юнга с прыжками больше всего напоминает граф Гельфанда – Цетлина, соответствующий ветвелению унитарных групп: вершины k-го уровня со- ответствуют неубывающим целочисленным последовательностям длины k, а ребро соответствует тому, что соответствующие последовательности
3

перемежаются. Но при изучении графа Юнга с прыжками возникают существенные специфические сложности, что видно из дальнейшего.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ
    Вики Р.
    5 (44 отзыва)
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написан... Читать все
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написание письменных работ для меня в удовольствие.Всегда качественно.
    #Кандидатские #Магистерские
    60 Выполненных работ
    Егор В. кандидат наук, доцент
    5 (428 отзывов)
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Ск... Читать все
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Скорее всего Ваш заказ будет выполнен раньше срока.
    #Кандидатские #Магистерские
    694 Выполненных работы
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы

    Другие учебные работы по предмету

    Алгоритмы для динамических диаграмм Вороного
    📅 2021год
    🏢 Санкт-Петербургский государственный университет
    О локальных свойствах решений задач гидродинамики
    📅 2021год
    🏢 Санкт-Петербургский государственный университет
    Структуры комодулей на кольцах Чжоу флаговых многообразий
    📅 2021год
    🏢 Санкт-Петербургский государственный университет
    Полнота биортогональных систем для нескольких интервалов
    📅 2021год
    🏢 Санкт-Петербургский государственный университет