Использование инструментария семантических сетей для оценки состояния пациента по данным врачебных осмотров

Кушеева, Мария Николаевна Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Интеллектуальный анализ данных в настоящее время используется в различных направлениях, в том числе и в медицине. Семантические сети, в свою очередь, позволяют визуально и доступно объяснить связи между объектами, явлениями и субъектами действий. Такие технологии могут применяться для описания состояния пациента с различными нозологиями. В работе предлагается использовать инструментарий семантический сетей для оценки состояния пациента с инфекционными заболеваниями по данным врачебных осмотров.

Введение ………………………………………………………………………………………………. 14

1. Обзор технологий семантического моделирования в здравоохранении ….. 17

1.1 Семантические сети как модель представления данных…………………… 17

1.2 Семантические сети в медицине…………………………………………………….. 19

1.2.1 Объединенная база медицинских знаний ………………………………….. 19

1.2.2 Онтология медицинской диагностики для интеллектуальных
систем поддержки принятия решений ……………………………………………… 22

1.2.3 Система поддержки принятия клинических решения управляемая
онтологией для диагностики инфекционных заболеваний и назначения
антибиотиков …………………………………………………………………………………. 26

1.3 Обзор методов автоматического определения степени тяжести
заболеваний ………………………………………………………………………………………. 28

1.3.1 Классификация степени тяжести заболевания на основе
искусственных нейронных сетей ……………………………………………………… 29

1.3.2 Автоматическое распознавание тяжести симптомов по записям
психиатрической экспертизы…………………………………………………………… 31

1.4 Описание метода оценки качества семантических сетей ………………….. 33

1.5 Выводы по главе …………………………………………………………………………… 35

2. Разработка метода автоматической оценки состояния тяжести заболевания
пациента по данным врачебных осмотров на основе использования
семантических сетей ……………………………………………………………………………… 37

2.1 Описание способа использования семантических сетей в определении
степени тяжести заболевания ……………………………………………………………… 37

2.2 Построение семантических сетей …………………………………………………… 39

2.3 Формализованное описание входных данных …………………………………. 41
2.4 Формальная постановка задачи ……………………………………………………… 43

2.5 Проектирование метода определения состояния пациента ………………. 43

2.6 Диаграмма классов ……………………………………………………………………….. 45

2.7 Детальное проектирование ……………………………………………………………. 47

2.7.1 Загрузка файлов ……………………………………………………………………… 47

2.7.2 Алгоритм функции преобразования файла в матрицу ……………….. 48

2.7.3 Алгоритм фрагментации семантической сети …………………………… 49

2.7.4 Алгоритм функции сравнения семантических сетей………………….. 51

2.8 Выводы по главе …………………………………………………………………………… 54

3. Программная реализация предложенного метода оценки состояния
тяжести пациентов ………………………………………………………………………………… 55

3.1 О программе…………………………………………………………………………………. 55

3.2 Описание структуры данных …………………………………………………………. 56

3.3 Описание основных функций ………………………………………………………… 58

3.3.1 Загрузка файлов ……………………………………………………………………… 58

3.3.2 Результат работы программы…………………………………………………… 59

3.4 Выводы по главе …………………………………………………………………………… 61

4. Тестирование разработанного метода определения степени тяжести
заболевания на базе историй болезни пациентов с рожистыми воспалениями
…………………………………………………………………………………………………………….. 62

4.1 Функциональное тестирование ………………………………………………………. 66

4.2 Тестирование программного прототипа на корректность оценки
состояния пациента ……………………………………………………………………………. 70

4.3 Выводы по главе …………………………………………………………………………… 76

5 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение … 77
5.1 Предпроектный анализ ………………………………………………………………….. 77

5.2 Организация и планирование работ ……………………………………………….. 80

5.3 Расчет сметы затрат на выполнение проекта …………………………………… 83

5.4 Оценка экономической эффективности проекта ……………………………… 88

5.5 Риски научно-исследовательского проекта …………………………………….. 89

Выводы по разделу …………………………………………………………………………….. 90

6 Социальная ответственность ……………………………………………………………….. 91

Введение …………………………………………………………………………………………… 91

6.1 Правовые и организационные вопросы обеспечения безопасности ….. 92

6.2 Производственная безопасность…………………………………………………….. 95

6.3 Экологическая безопасность………………………………………………………… 106

6.4 Безопасность в чрезвычайных ситуациях ……………………………………… 107

Выводы по разделу …………………………………………………………………………… 111

Заключение …………………………………………………………………………………………. 112

Список использованных источников …………………………………………………….. 115

Приложение А …………………………………………………………………………………….. 119

Приложение Б ……………………………………………………………………………………… 132

Приложение В …………………………………………………………………………………….. 137

Приложение Г ……………………………………………………………………………………… 142

В настоящее время практически треть текстовой информации,
требующей специализированной обработки, составляют такие медицинские
данные, как анамнез, результаты осмотров и обследований и многое другое.
Такие данные, как правило, хранятся в неструктурированном виде. Проблемам
создания систем обработки естественного языка, представленных в текстовом
формате, посвящены работы большого количества исследователей (Баранов
А.А., Намазова-Баранова Л.С., Смирнов И.В., Девяткин Д.А., Шелманов А.О.)
[1,2]. Анализ их работ показал, что семантические сети достаточно
эффективно могут быть применены в области медицины и имеют огромный
потенциал в использовании при решении самых разных задач.
Семантические сети, как модель представления знаний для анализа
текстовых данных, позволяют визуализировать и доступно объяснять связи
между объектами, явлениями и субъектами различных действий. Поэтому они
достаточно эффективно могут применяться для описания состояния пациента
с различными нозологиями.
Установление тяжести заболевания в целях упрощения работы
медицинского персонала, ведения истории болезни, автоматизации работы

Основные результаты, полученные в процессе выполнения работы:
1. Выполнен анализ существующих способов и методов применения
семантических сетей в сфере здравоохранения. Признано, что модификация
метода оценки качества семантических сетей применима для определения
степени тяжести состояния пациента.
2. Разработан и описан метод определения степени тяжести
инфекционного заболевания пациента, также было сформулировано
формализованное представление входных данных и приведено описание
использованных алгоритмов.
3. Реализован программный прототип на языке C# в среде разработки
MS Visual Studio 2019, реализующий метод определения степени тяжести
пациента.
4. Проведено тестирование программного прототипа и, соответственно,
самого разработанного метода на реальных данных пациентов с рожистыми
воспалениями на предмет верной оценки состояния тяжести. Всего в выборке
содержалось 50 случаев рассматриваемого заболевания разной степени
тяжести. Тестирование показало, что легкая степень тяжести определяется
безошибочно в 100% случаях, средняя степень в 70%, а тяжелая в 85%.
Неверно определенные случаи имеют более низкую степень тяжести, чем
заявлено в медицинской карте пациента.
Стоит отметить, что созданный программный прототип нуждается в
дальнейшей модификации и дополнениях для полноценного введения в
эксплуатацию, а разработанный метод может быть использован в другой
медицинской информационной системе.
Рекомендации:
 метод определения степени тяжести заболеваний можно
рекомендовать для определения степени тяжести заболеваний различных
нозологий, необязательно для инфекционных;
 программу определения степени тяжести заболевания можно
рекомендовать для внедрения в большие медицинские информационные
системы.
Также в рамках данной работы были разработаны разделы «Финансовый
менеджмент, ресурсоэффективность и ресурсосбережение», «Социальная
ответственность», а также раздел на иностранном языке (английский) –
«Overview of Semantic Modeling Technologies in Healthcare», размещенный в
Приложении А.
Публикации:
1. Кушеева М.Н. Исследование метода выделения терминов текста /
М.Н. Кушеева, А.А. Аюшеева // научно-практический журнал «ASпирант» .
г. Ростов-на-Дону. – 2018. – N4. – c.18-20
2. Кушеева М.Н. Метод оценки качества семантической сети текста /
М.Н. Кушеева, А.А. Аюшеева, Т.Н. Гомбожапова Т.Н // Современные
наукоемкие технологии. – 2019. – N11. – c. 77-81
3. Кушеева М.Н. О применении метода анализа семантических сетей в
медицинской статистике / М.Н. Кушеева // Материалы ВНКСФ-26. – 2020. –
с. 383-384
4. Кушеева М.Н. О применении метода анализа семантических сетей в
определении степени тяжести заболевания / М.Н. Кушеева // Сборник
научных трудов XVIII Международной научно-практической конференции
студентов, аспирантов и молодых ученых «Молодёжь и современные
информационные технологии». – 2021.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа
    user1250010 Омский государственный университет, 2010, преподаватель,...
    4 (15 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    21 Выполненная работа
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    AleksandrAvdiev Южный федеральный университет, 2010, преподаватель, канд...
    4.1 (20 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    28 Выполненных работ
    Кирилл Ч. ИНЖЭКОН 2010, экономика и управление на предприятии транс...
    4.9 (343 отзыва)
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). С... Читать все
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). Сейчас пишу диссертацию на соискание степени кандидата экономических наук.
    #Кандидатские #Магистерские
    692 Выполненных работы
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ

    Другие учебные работы по предмету

    Модернизация системы автоматизации АСУ ТП АО «Farg’onaazot»
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Интеграционный сервис передачи данных между АСУ ТП и MES
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Методы сегментации новообразований головного мозга
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)