Исследование строения 3Д – объектов из интерметаллидных соединений полученных селективным лазерным сплавлением
Объектом исследования являлись механоактивированный и синтезированный тепловым взрывом порошок интерметаллида Ni3Al, образцы, полученные селективным лазерным сплавлением.
Целью данной работы было исследование процесса формирования прототипов из механоактивированного и синтезированного порошка интерметаллида Ni3Al методом селективного лазерного сплавления, оценка строения и свойств получаемого материала.
В результате исследований описано строение полученных порошков, их аттестация с целью использования для селективного лазерного сплавления, выбор режимов селективного лазерного сплавления образцов, исследование их структуры и оценка микротвердости.
Степень внедрения: внедрение в производство не осуществлено.
Область применения: аддитивные технологии.
Реферат …………………………………………………………………………. 6
Введение …………………………………………………………………………10
1. Литературный обзор ………………………………………………………..12
1.1. Аддитивные технологии формирования изделий из металлов ……12
1.1.1. Классификация аддитивных технологий ………………………..12
1.1.2. Селективное лазерное сплавление – перспективный метод
аддитивных технологий …………………………………………..15
1.2. Методы получения порошков для аддитивных технологий …………20
1.2.1. Традиционные методы получения порошков ……………………20
1.2.2. Получение порошков механической активацией ………………. 23
1.3. Использование для СЛС порошков интерметаллидов, полученных
механической активацией и тепловым взрывом ……………….25
1.3.1. Интерметалид Ni3Al ………………………………………………25
1.3.2. Механическая активация компонентов ………………………….24
1.3.3. Получение интерметаллида тепловым взрывом ………………. 28
2. Материалы и методы ……………………………………………………. 30
2.1. Получение порошка для СЛС ……………………………………….. 30
2.2. Получение образцов Ni3Al методом СЛС …………………………… 32
2.3. Методы анализа структуры и свойства образцов ……………..…… 34
3. Результаты эксперимента …………………………………………………… 37
3.1.Исследование строения порошков …………………………………… 37
3.2. Выбор режимов СЛС ………………………………………….………. 42
3.3. Исследование структуры образцов полученных СЛС ……………… 45
3.4. Оценка механических свойств ……………………………………….. 49
4. Финансовый менеджмент, ресурсоэффективность и
ресурсосбережение…………………………………………………………………………….. 53
4.1. Введение ……………………………………………………..………… 53
4.2. Потенциальные потребители результатов исследования …..……… 54
4.3. Анализ конкурентных технических решений с позиции
ресурсоэффективности и ресурсосбережения ……………………………….. 55
4.4. SWOT-анализ …………………………………………………………. 58
4.5. Цели и результат проекта ………….………………………………… 61
4.5.1. Организация и планирование работ ……………………………. 61
4.5.2. Продолжительность этапов работ ……………………………….62
4.5.3. Расчет сметы затрат на выполнение проекта ………..…………67
4.5.4. Расчет затрат на материалы …..………………………………….67
4.5.5. Расчет амортизационных расходов …………………………….. 68
4.5.6. Расчет затрат на электроэнергию ………………………………. 69
4.5.7. Расчет заработной платы ……………………..………………….71
4.6. Отчисления на социальные нужды …………..………………………. 72
4.6.1. Накладные расходы …………..………………………………… 72
4.6.2. Расчет общей себестоимости затрат разработки ……..………. 74
4.7. Определение ресурсной (ресурсосберегающей), финансовой,
бюджетной, социальной и экономической эффективности исследования ….74
4.7.1. Оценка абсолютной эффективности исследования …….……. 74
4.7.1. Оценка сравнительной эффективности исследования ………. 79
5. Социальная ответственность ………………………………………………. 86
5.1. Введение ……………………………………………………………….. 86
5.2.Правовые и организационные вопросы обеспечения
безопасности……………………………………………………………………. 85
5.2.1. Эргономические требования к правильному расположению и
компоновке рабочей зоны …………………………………………………………………. 86
5.3. Производственная безопасность ……………………………………… 87
5.3.1. Анализ опасных и вредных производственных
факторов………………………………………………………………………… 88
5.3.2. Анализ показателей микроклимата …………………………. 88
5.3.3. Анализ показателей шума ……..…………………………….. 91
5.3.4. Анализ освещенности рабочей зоны……….………………… 92
5.3.5. Психофизические вредные факторы …………………………………. 93
5.3.6. Анализ электробезопасности ……….………………………… 94
5.4. Экологическая безопасность ……………………………………….. 97
5.4.1.Экологическая безопасность на рабочей зоне ………………………… 99
5.5. Безопасность в чрезвычайных ситуациях ……………………………100
5.6. Организационные мероприятия обеспечения безопасности …..…. 102
Основные результаты и выводы по исследовательской работе ……………..104
Список используемой литературы …………………………………………… 105
Список публикаций …………………………………………………………… 110
Приложение А (раздел на иностранном языке) …………………………….. 111
Получение деталей из металлов и сплавов с помощью 3D-печати или
аддитивных технологий в последние годы находит все больше сфер
применения. Все разнообразие аддитивного производства, которое включает
полимеры, керамику и металлические материалы, во всем мире было оценено
в 2017 году в 10 миллиардов долларов [1-2]. Это число быстро увеличивается
в секторах производства, связанных с автомобилестроением,
авиакосмической промышленностью и другими отраслями [3-4].
В настоящее время опубликовано много научных обзоров,
посвященных изготовлению деталей и компонентов из металла и сплавов
аддитивными методами. В них рассматриваются аспекты выбора материала,
вопросы оптимизации параметров процесса и структуры получаемого
изделия, свойств в исходном состоянии и после обработки [2-4]. Однако
полная реализация потенциала аддитивных технологий требует продолжения
исследований и глубокого понимания связи «параметры процесса –
структура – свойства» для более широкого круга современных материалов. К
ним относятся стали, алюминиевые сплавы и суперсплавы, в том числе на
основе интерметаллидов [5].
К наиболее перспективным жаропрочным интерметаллидным сплавам
относят интерметаллидные сплавы на основе алюминида никеля и титана. В
числе применения преимуществa интерметаллидных сплавов указывается
достижение эксплуатационных характеристик на уровне традиционных
жаропрочных никелевых сплавов или выше при меньшем содержании
дорогих легирующих элементов и более низкой плотности [6-8].
Отличие данных сплавов в возможности достижения более высоких
характеристик сплава, обусловленных особыми свойствами
интерметаллидных соединений (повышенная температура плавления,
высокая химическая стойкость, низкая плотность), приобретаемыми за счет
формирования ковалентной или ионной связи между атомами. Вместе с тем
высокая хрупкость интерметаллидных соединений, также обусловленная
типом связи, зачастую не позволяет применять данные сплавы без
оптимизации и проведения необходимого комплекса исследований [6].
Разработка порошков для аддитивных технологий на данный момент
очень актуальна. В связи с этим большой интерес представляет технология
получения порошков интерметаллидов методом механической активации
компонентов сплава в шаровых мельницах с последующим
высокотемпературным синтезом, позволяющим получать материал
требуемого состава [9].
Целью данной работы было исследование процесса формирования
прототипов из механоактивированного и синтезированного порошка
интерметаллида Ni3Al методом селективного лазерного сплавления (CЛC), а
также оценка строения и свойств получаемого материала.
В работе были поставлены следующие задачи:
1. Исследовать гранулометрический состав и морфологию порошка
интерметаллида Ni3Al, полученного механоактивацией и
самораспространяющимся синтезом, убедиться в его пригодности для
селективного лазерного сплавления.
2. Выбрать режимы селективного лазерного сплавления, обеспечивающие
формирование компактного материала.
3. Исследовать строение и механические свойства полученных образцов.
1.1. Аддитивные технологии формирования изделий из металлов
1.1.1. Классификация аддитивных технологий
Последние выполненные заказы
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!