Исследование возможности применения сингулярного разложения матриц яркостей для классификации цифровых изображений на спектрозональных и гиперспектральных снимках

Кохановский Виталий Алексеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В данной работе исследован метод распознавания однородных областей на данных дистанционного зондирования Земли, основанный на сингулярном разложении значений матриц яркостей, и разработан алгоритм классификации изображений. Исследование применения алгоритма представлено экспериментом, в ходе которого были классифицированы многозональные и гиперспектральные космические снимки и проведен анализ результатов.

Современное состояние дистанционного зондирования Земли обуславливается использованием технических систем анализа и обработки информации. Цифровые данные, обрабатываемые в целях получения тематической информации в большинстве случаев представлены изображениями. С каждым годом возрастающий объем информации стимулирует развитие быстродействующих вычислительных ресурсов, способных выполнять анализ изображений, используя комбинированные алгоритмы и методики, обеспечивающие высококачественный уровень анализа при имеющихся ограничениях.
При анализе изображения встает задача определения характеристик, по которым возможно разделение изображения на однородные области. В дальнейшей обработке определенные области используются для классификации. Классификация представляет собой процесс установления соответствия между областями на изображении и реальными объектами. Соответствие определяется по критериям схожести. На данный момент существует множество алгоритмов, учитывающих не только яркостные характеристики объектов, но текстурные и иные признаки (Форсайт, 2008).
Основываясь на приведенных соображениях, при создании методики классификации изображения можно выделить следующие основные этапы:
Разделение изображения на однородные области,
Вычисление признаков для каждой однородной области
Классификация однородных областей по вычисленным признакам.
При разработке алгоритма классификации возникает ряд проблем, связанных с особенностями интерпретации данных и учетом характеристик объектов:
Процедура сегментации изображения выполняется с большей точностью, при учете априорной информации в исследуемой предметной области, что требует экспертных знаний, а также настройки параметров, обеспечивающих качество выделения однородных областей.
При использовании искусственных нейронных сетей (ИНС) для задач классификации изображений возникает задача точной настройки алгоритма, учитывающего пространство признаков, что является необходимым критерием при анализе большого объема данных в процессе обучения нейронной сети.
Зачастую, неоднозначное представление данных нейронной сетью, вынуждает использовать более простые методы классификации.
Простые методы классификации могут быть представлены обучаемыми или необучаемыми моделями, в большинстве случаев обучаемые модели подразумевают установление регионов, вычисленные признаки которых будут использоваться как эталонные, при идентификации объектов на изображениях.
Актуальность данной работы обуславливается низкой точностью существующих простых методов классификации, и отсутствием учета непрямых спектральных признаков в окрестности каждого элемента изображения.
Целью работы является исследование алгоритма, основанного на сингулярном разложении матриц яркостей для задач анализа цифровых изображений космических съемочных систем.
Для достижения поставленной цели исследования необходимо решить следующие задачи:
Изучение существующих методов сегментации и классификации данных дистанционного зондирования Земли с целью анализа современного состояния предметной области для формирования требований к исследуемому алгоритму.
Отбор параметров, используемых в качестве признаков объектов
Разработка алгоритма классификации на основе сингулярного разложения матриц.
Проведение эксперимента и анализ результатов:
Подбор данных для обработки
Предварительная обработка данных
Классификация изображений разработанным методом
Анализ результатов сегментации
Научная новизна работы заключается в использовании алгоритма сингулярного разложения матриц яркостей для задач объектно-ориентированной классификации объектов на спектрозональных и гиперспектральных снимках.
Данный алгоритм подразумевает использование в качестве признаков объектов не прямые спектральные характеристики пикселей, а сингулярные значения областей изображения, учитывающие параметры яркости в исследуемой окрестности.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    user1250010 Омский государственный университет, 2010, преподаватель,...
    4 (15 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    21 Выполненная работа
    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ
    Татьяна П.
    4.2 (6 отзывов)
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки ... Читать все
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки в одном из крупнейших университетов Германии.
    #Кандидатские #Магистерские
    9 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Дмитрий М. БГАТУ 2001, электрификации, выпускник
    4.8 (17 отзывов)
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал стать... Читать все
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал статьи, патенты, кандидатскую диссертацию, преподавал. Занимаюсь этим с 2003.
    #Кандидатские #Магистерские
    19 Выполненных работ
    Мария Б. преподаватель, кандидат наук
    5 (22 отзыва)
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальнос... Читать все
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальности "Экономика и управление народным хозяйством". Автор научных статей.
    #Кандидатские #Магистерские
    37 Выполненных работ

    Другие учебные работы по предмету