Исследование возможности применения сингулярного разложения матриц яркостей для классификации цифровых изображений на спектрозональных и гиперспектральных снимках

Кохановский Виталий Алексеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В данной работе исследован метод распознавания однородных областей на данных дистанционного зондирования Земли, основанный на сингулярном разложении значений матриц яркостей, и разработан алгоритм классификации изображений. Исследование применения алгоритма представлено экспериментом, в ходе которого были классифицированы многозональные и гиперспектральные космические снимки и проведен анализ результатов.

Современное состояние дистанционного зондирования Земли обуславливается использованием технических систем анализа и обработки информации. Цифровые данные, обрабатываемые в целях получения тематической информации в большинстве случаев представлены изображениями. С каждым годом возрастающий объем информации стимулирует развитие быстродействующих вычислительных ресурсов, способных выполнять анализ изображений, используя комбинированные алгоритмы и методики, обеспечивающие высококачественный уровень анализа при имеющихся ограничениях.
При анализе изображения встает задача определения характеристик, по которым возможно разделение изображения на однородные области. В дальнейшей обработке определенные области используются для классификации. Классификация представляет собой процесс установления соответствия между областями на изображении и реальными объектами. Соответствие определяется по критериям схожести. На данный момент существует множество алгоритмов, учитывающих не только яркостные характеристики объектов, но текстурные и иные признаки (Форсайт, 2008).
Основываясь на приведенных соображениях, при создании методики классификации изображения можно выделить следующие основные этапы:
Разделение изображения на однородные области,
Вычисление признаков для каждой однородной области
Классификация однородных областей по вычисленным признакам.
При разработке алгоритма классификации возникает ряд проблем, связанных с особенностями интерпретации данных и учетом характеристик объектов:
Процедура сегментации изображения выполняется с большей точностью, при учете априорной информации в исследуемой предметной области, что требует экспертных знаний, а также настройки параметров, обеспечивающих качество выделения однородных областей.
При использовании искусственных нейронных сетей (ИНС) для задач классификации изображений возникает задача точной настройки алгоритма, учитывающего пространство признаков, что является необходимым критерием при анализе большого объема данных в процессе обучения нейронной сети.
Зачастую, неоднозначное представление данных нейронной сетью, вынуждает использовать более простые методы классификации.
Простые методы классификации могут быть представлены обучаемыми или необучаемыми моделями, в большинстве случаев обучаемые модели подразумевают установление регионов, вычисленные признаки которых будут использоваться как эталонные, при идентификации объектов на изображениях.
Актуальность данной работы обуславливается низкой точностью существующих простых методов классификации, и отсутствием учета непрямых спектральных признаков в окрестности каждого элемента изображения.
Целью работы является исследование алгоритма, основанного на сингулярном разложении матриц яркостей для задач анализа цифровых изображений космических съемочных систем.
Для достижения поставленной цели исследования необходимо решить следующие задачи:
Изучение существующих методов сегментации и классификации данных дистанционного зондирования Земли с целью анализа современного состояния предметной области для формирования требований к исследуемому алгоритму.
Отбор параметров, используемых в качестве признаков объектов
Разработка алгоритма классификации на основе сингулярного разложения матриц.
Проведение эксперимента и анализ результатов:
Подбор данных для обработки
Предварительная обработка данных
Классификация изображений разработанным методом
Анализ результатов сегментации
Научная новизна работы заключается в использовании алгоритма сингулярного разложения матриц яркостей для задач объектно-ориентированной классификации объектов на спектрозональных и гиперспектральных снимках.
Данный алгоритм подразумевает использование в качестве признаков объектов не прямые спектральные характеристики пикселей, а сингулярные значения областей изображения, учитывающие параметры яркости в исследуемой окрестности.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Мария А. кандидат наук
    4.7 (18 отзывов)
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет... Читать все
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет, реклама, журналистика, педагогика, право)
    #Кандидатские #Магистерские
    39 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ

    Другие учебные работы по предмету