Исследование возможности применения сингулярного разложения матриц яркостей для классификации цифровых изображений на спектрозональных и гиперспектральных снимках

Кохановский Виталий Алексеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В данной работе исследован метод распознавания однородных областей на данных дистанционного зондирования Земли, основанный на сингулярном разложении значений матриц яркостей, и разработан алгоритм классификации изображений. Исследование применения алгоритма представлено экспериментом, в ходе которого были классифицированы многозональные и гиперспектральные космические снимки и проведен анализ результатов.

Современное состояние дистанционного зондирования Земли обуславливается использованием технических систем анализа и обработки информации. Цифровые данные, обрабатываемые в целях получения тематической информации в большинстве случаев представлены изображениями. С каждым годом возрастающий объем информации стимулирует развитие быстродействующих вычислительных ресурсов, способных выполнять анализ изображений, используя комбинированные алгоритмы и методики, обеспечивающие высококачественный уровень анализа при имеющихся ограничениях.
При анализе изображения встает задача определения характеристик, по которым возможно разделение изображения на однородные области. В дальнейшей обработке определенные области используются для классификации. Классификация представляет собой процесс установления соответствия между областями на изображении и реальными объектами. Соответствие определяется по критериям схожести. На данный момент существует множество алгоритмов, учитывающих не только яркостные характеристики объектов, но текстурные и иные признаки (Форсайт, 2008).
Основываясь на приведенных соображениях, при создании методики классификации изображения можно выделить следующие основные этапы:
Разделение изображения на однородные области,
Вычисление признаков для каждой однородной области
Классификация однородных областей по вычисленным признакам.
При разработке алгоритма классификации возникает ряд проблем, связанных с особенностями интерпретации данных и учетом характеристик объектов:
Процедура сегментации изображения выполняется с большей точностью, при учете априорной информации в исследуемой предметной области, что требует экспертных знаний, а также настройки параметров, обеспечивающих качество выделения однородных областей.
При использовании искусственных нейронных сетей (ИНС) для задач классификации изображений возникает задача точной настройки алгоритма, учитывающего пространство признаков, что является необходимым критерием при анализе большого объема данных в процессе обучения нейронной сети.
Зачастую, неоднозначное представление данных нейронной сетью, вынуждает использовать более простые методы классификации.
Простые методы классификации могут быть представлены обучаемыми или необучаемыми моделями, в большинстве случаев обучаемые модели подразумевают установление регионов, вычисленные признаки которых будут использоваться как эталонные, при идентификации объектов на изображениях.
Актуальность данной работы обуславливается низкой точностью существующих простых методов классификации, и отсутствием учета непрямых спектральных признаков в окрестности каждого элемента изображения.
Целью работы является исследование алгоритма, основанного на сингулярном разложении матриц яркостей для задач анализа цифровых изображений космических съемочных систем.
Для достижения поставленной цели исследования необходимо решить следующие задачи:
Изучение существующих методов сегментации и классификации данных дистанционного зондирования Земли с целью анализа современного состояния предметной области для формирования требований к исследуемому алгоритму.
Отбор параметров, используемых в качестве признаков объектов
Разработка алгоритма классификации на основе сингулярного разложения матриц.
Проведение эксперимента и анализ результатов:
Подбор данных для обработки
Предварительная обработка данных
Классификация изображений разработанным методом
Анализ результатов сегментации
Научная новизна работы заключается в использовании алгоритма сингулярного разложения матриц яркостей для задач объектно-ориентированной классификации объектов на спектрозональных и гиперспектральных снимках.
Данный алгоритм подразумевает использование в качестве признаков объектов не прямые спектральные характеристики пикселей, а сингулярные значения областей изображения, учитывающие параметры яркости в исследуемой окрестности.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа
    Анна Н. Государственный университет управления 2021, Экономика и ...
    0 (13 отзывов)
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уни... Читать все
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уникальности с нуля. Все работы оформляю в соответствии с ГОСТ.
    #Кандидатские #Магистерские
    0 Выполненных работ
    Анна К. ТГПУ им.ЛН.Толстого 2010, ФИСиГН, выпускник
    4.6 (30 отзывов)
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помог... Читать все
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помогала студентам, вышедшим на меня по рекомендации.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Оксана М. Восточноукраинский национальный университет, студент 4 - ...
    4.9 (37 отзывов)
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политоло... Читать все
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политологии.
    #Кандидатские #Магистерские
    68 Выполненных работ
    Александра С.
    5 (91 отзыв)
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повы... Читать все
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повышении уникальности текста и оформлении библиографических ссылок по ГОСТу.
    #Кандидатские #Магистерские
    132 Выполненных работы

    Другие учебные работы по предмету