Top.Mail.Ru

Исследование возможности применения сингулярного разложения матриц яркостей для классификации цифровых изображений на спектрозональных и гиперспектральных снимках

Кохановский Виталий Алексеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В данной работе исследован метод распознавания однородных областей на данных дистанционного зондирования Земли, основанный на сингулярном разложении значений матриц яркостей, и разработан алгоритм классификации изображений. Исследование применения алгоритма представлено экспериментом, в ходе которого были классифицированы многозональные и гиперспектральные космические снимки и проведен анализ результатов.

Современное состояние дистанционного зондирования Земли обуславливается использованием технических систем анализа и обработки информации. Цифровые данные, обрабатываемые в целях получения тематической информации в большинстве случаев представлены изображениями. С каждым годом возрастающий объем информации стимулирует развитие быстродействующих вычислительных ресурсов, способных выполнять анализ изображений, используя комбинированные алгоритмы и методики, обеспечивающие высококачественный уровень анализа при имеющихся ограничениях.
При анализе изображения встает задача определения характеристик, по которым возможно разделение изображения на однородные области. В дальнейшей обработке определенные области используются для классификации. Классификация представляет собой процесс установления соответствия между областями на изображении и реальными объектами. Соответствие определяется по критериям схожести. На данный момент существует множество алгоритмов, учитывающих не только яркостные характеристики объектов, но текстурные и иные признаки (Форсайт, 2008).
Основываясь на приведенных соображениях, при создании методики классификации изображения можно выделить следующие основные этапы:
Разделение изображения на однородные области,
Вычисление признаков для каждой однородной области
Классификация однородных областей по вычисленным признакам.
При разработке алгоритма классификации возникает ряд проблем, связанных с особенностями интерпретации данных и учетом характеристик объектов:
Процедура сегментации изображения выполняется с большей точностью, при учете априорной информации в исследуемой предметной области, что требует экспертных знаний, а также настройки параметров, обеспечивающих качество выделения однородных областей.
При использовании искусственных нейронных сетей (ИНС) для задач классификации изображений возникает задача точной настройки алгоритма, учитывающего пространство признаков, что является необходимым критерием при анализе большого объема данных в процессе обучения нейронной сети.
Зачастую, неоднозначное представление данных нейронной сетью, вынуждает использовать более простые методы классификации.
Простые методы классификации могут быть представлены обучаемыми или необучаемыми моделями, в большинстве случаев обучаемые модели подразумевают установление регионов, вычисленные признаки которых будут использоваться как эталонные, при идентификации объектов на изображениях.
Актуальность данной работы обуславливается низкой точностью существующих простых методов классификации, и отсутствием учета непрямых спектральных признаков в окрестности каждого элемента изображения.
Целью работы является исследование алгоритма, основанного на сингулярном разложении матриц яркостей для задач анализа цифровых изображений космических съемочных систем.
Для достижения поставленной цели исследования необходимо решить следующие задачи:
Изучение существующих методов сегментации и классификации данных дистанционного зондирования Земли с целью анализа современного состояния предметной области для формирования требований к исследуемому алгоритму.
Отбор параметров, используемых в качестве признаков объектов
Разработка алгоритма классификации на основе сингулярного разложения матриц.
Проведение эксперимента и анализ результатов:
Подбор данных для обработки
Предварительная обработка данных
Классификация изображений разработанным методом
Анализ результатов сегментации
Научная новизна работы заключается в использовании алгоритма сингулярного разложения матриц яркостей для задач объектно-ориентированной классификации объектов на спектрозональных и гиперспектральных снимках.
Данный алгоритм подразумевает использование в качестве признаков объектов не прямые спектральные характеристики пикселей, а сингулярные значения областей изображения, учитывающие параметры яркости в исследуемой окрестности.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    user1250010 Омский государственный университет, 2010, преподаватель,...
    4 (15 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    21 Выполненная работа
    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ

    Другие учебные работы по предмету