Микро- и наночастицы на основе алифатических сложных полиэфиров для доставки противоопухолевых препаратов
Системы доставки лекарств на основе биоразлагаемых полимерных частиц вызывают огромной интерес для использования в терапии онкологических заболеваний в связи с их способностью инкапсулировать лекарственный препарат внутрь частицы, что обеспечивает защиту от преждевременной дезактивации лекарства и защищает здоровые клетки от неселективного воздействия цитостатического препарата. Накапливаясь в пораженной области, полимерные частицы способны высвобождать цитостатик с контролируемой скоростью, обеспечивая постоянную концентрацию лекарства, что повышает эффективность проводимой терапии и снижает побочные эффекты. В представленной работе был разработан метод эффективного инкапсулирования нового противоопухолевого препарата — диоксадэта в микро- и наночастицы на основе биоразлагаемых амфифильных блок-сополимеров алифатических полигидроксикислот. Также проведено сравнение свойств полученных контейнеров с широко применяемыми средствами доставки лекарств на основе гомополимеров алифатических полиэфиров. Серия образцов биосовместимых гомополимеров на основе алифатических полигидроксикислот: поли(молочной кислотой) и поли(капролактона) и их блок-сополимеров с метиловым эфиром поли(этиленгликоля) была получена методом полимеризации с раскрытием цикла с молекулярными массами в диапазоне от 7000 до 300000. Методами наноосаждения и одинарной эмульсии были получены микро- и наночастицы на основе гомо- и сополимеров. В процессе формирования частиц проводили загрузку противоопухолевого препарата, начальное количество которого варьировали от 1 до 6 мг. Размер и дзета-потенциал полученных контейнеров были определены с использованием метода динамического рассеяния света и анализа траектории частиц и имели значения в диапазоне от 90 до 700 нм для размера и от -16 до -38 мВ для дзета-потенциала. Были исследованы эффективность инкапсулирования и максимальная загрузка противоопухолевого препарата в зависимости от молекулярной массы и природы полимера, а также от размера и метода получения частиц. Установлено, что частицы на основе амфифильных блок-сополимеров являются более перспективными по сравнению с контейнерами на основе гомополимеров и обладают максимальной эффективностью инкапсулирования 92 % и загрузкой равной 108 мкг/мг противоопухолевого препарата на 1 милиграмм полимерных частиц.
Перечень условных обозначений…………………………………………………………………………………………4
ВВЕДЕНИЕ………………………………………………………………………………………………………………………..5
1. ОБЗОР ЛИТЕРАТУРЫ…………………………………………………………………………………………………….8
1.1. Системы доставки лекарств на основе полимерных частиц……………………………………………8
1.1.1 Типы полимерных частиц………………………………………………………………………………………….11
1.1.2 Размер и потенциал полимерных частиц…………………………………………………………………….11
1.1.3. Факторы, влияющие на скорость высвобождения лекарств………………………………………..12
1.2. Биоразлагаемые полимеры для получения микро- и наночастиц…………………………………..14
1.2.1 Поли(молочная кислота)……………………………………………………………………………………………16
1.2.2. Синтез поли(молочной кислоты)………………………………………………………………………………17
1.2.3 Свойства ПМК………………………………………………………………………………………………………….20
1.2.4. Системы доставки лекарств на основе полимерных частиц из ПМК………………………….21
1.2.5. Поли(ε-капролактон)………………………………………………………………………………………………..21
1.2.6. Получение поли(капролактона)…………………………………………………………………………………22
1.2.7. Системы доставки лекарств на основе частиц из ПКЛ………………………………………………23
1.2.8. Поли(этиленгликоль)………………………………………………………………………………………………..24
1.3. Получение полимерных частиц……………………………………………………………………………………26
1.3.1. Эмульсионные методы на основе испарения растворителя………………………………………..27
1.3.1.1. Механизм процесса……………………………………………………………………………………………….28
1.3.1.2. Стабилизация эмульсии…………………………………………………………………………………………29
1.3.1.3. Ультразвуковая гомогенизация……………………………………………………………………………….30
1.3.1.4. Контроль размера микрочастиц……………………………………………………………………………..31
1.3.1.5. Влияние концентрации ПАВ на распределение частиц по размерам……………………….31
1.3.1.6. Влияние концентраций полимера и ПАВ………………………………………………………………..32
1.3.1.7. Влияние молекулярной массы полимера…………………………………………………………………33
1.3.1.8. Влияние количества лекарственного средства на размер частиц……………………………..34
1.3.2. Метод наноосаждения………………………………………………………………………………………………34
1.3.2.1.Узо-эффект……………………………………………………………………………………………………………..35
1.3.2.2. Механизм формирования частиц……………………………………………………………………………37
1.3.2.3. Стабилизация наночастиц………………………………………………………………………………………38
1.3.2.4. Влияние молекулярной массы полимера на размер частиц……………………………………..39
1.3.2.5. Влияние концентрации полимера…………………………………………………………………………..40
1.3.2.6.Влияние растворителя…………………………………………………………………………………………….41
1.3.2.7. Влияние скорости ввода и перемешивания……………………………………………………………..42
2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ…………………………………………………………………………………43
2.1. Материалы………………………………………………………………………………………………………………….43
2.2. Оборудование……………………………………………………………………………………………………………..44
2.3. Методы……………………………………………………………………………………………………………………….44
2.3.1. Синтез сополимера ПЭГ-5000-б-ПМК и гомополимера ПМК……………………………………45
2.3.2. Синтез сополимера ПЭГ-5000-б-ПКЛ и гомополимера ПКЛ……………………………………..46
2.3.3. Методы исследования полимеров……………………………………………………………………………..46
2.3.4. Получение инкапсулированных наночастиц на основе гомополимеров ПМК, ПКЛ и
сополимеров ПЭГ-5000-б-ПМК и ПЭГ-5000-б-ПКЛ методом наноосаждения…………………….47
2.3.5. Получение инкапсулированных микрочастиц на основе гомополимеров ПМК, ПКЛ и
сополимеров ПЭГ-5000-б-ПМК и ПЭГ-5000-б-ПКЛ методом одинарной микроэмульсии
(масло-в-воде)…………………………………………………………………………………………………………………..48
2.3.6. Количественный анализ инкапсулированного препарата……………………………………………48
2.3.7. Исследование характеристик полимерных частиц……………………………………………………..49
3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ…………………………………………………………………………………….50
3.1. Синтез гомополимера ПМК и блок-сополимера ПЭГ-5000-б-ПМК………………………………50
3.2. Синтез гомополимера ПКЛ и блок-сополимера ПЭГ-5000-б-ПКЛ………………………………..55
3.3. Характеристики полимерных частиц…………………………………………………………………………..59
3.4. Характеристики инкапсулированных полимерных частиц, полученных методом
наноосаждения………………………………………………………………………………………………………………….66
3.5. Характеристики полимерных микрочастиц………………………………………………………………….70
3.5. Эффективность инкапсулирования диоксадэта в частицы, полученные методом
наноосаждения………………………………………………………………………………………………………………….77
3.6. Эффективность инкапсулирования диоксадэта в контейнеры, полученные методом
одинарной эмульсии………………………………………………………………………………………………………….80
ВЫВОДЫ…………………………………………………………………………………………………………………………85
БЛАГОДАРНОСТИ…………………………………………………………………………………………………………..86
СПИСОК ЛИТЕРАТУРЫ…………………………………………………………………………………………………..87
В течение последних двух десятилетий наблюдается значительный интерес к
разработке микро- и наночастиц как перспективных систем для доставки
лекарственных веществ. Такие системы могут увеличивать биодоступность,
растворимость и проницаемость многих сильнодействующих гидрофобных
препаратов [1]. Способность контролируемо высвобождать фармакологически
активные агенты в органах или тканях, в которых непосредственно необходимо
проводить терапию, при оптимальных скоростях и концентрациях вызывает интерес к
таким разработкам во многих областях медицины. Особое внимание привлечено к
терапии онкологических заболеваний, где состояние пациента определяется не только
успешным разрушением раковых клеток, но и способностью здоровых органов и
клеток преодолеть токсичность системной химиотерапии. Системная внутривенная
химиотерапия предполагает применение высоких доз цитостатических препаратов.
При использовании данного подхода лекарство доставляется системой
кровоснабжения как в опухолевые ткани, где оказывает свое прогнозируемое и
непосредственное действие и дезактивирует патологический очаг, однако при этом
большая часть препарата взаимодействует со здоровыми клетками. Поэтому,
достаточно часто после нескольких курсов традиционной химиотерапии пациенты
сталкиваются с побочными действиями цитостатиков, приводящими к отказу работы
почек и печени. Разработка новых подходов к лечению онкологических заболеваний
является актуальной и социально значимой задачей. Одной из лидирующих
онкологических патологий (имея в виду высокий уровень заболеваемости и низкий
уровень выживаемости) является рак яичников. В качестве альтернативного подхода
для проведения химиотерапии при раке яичников предлагается возможность
внутрибрюшинного введения полимерных частиц с инкапсулированным
цитостатическим препаратом, так называемая интраперитонеальная химиотерапия.
Аргументами для назначения локальной химиотерапии является меньшая токсичность
для организма при сравнении с системной химиотерапией, проводимой внутривенно,
а также характерная особенность рака яичников метастазировать по поверхности
брюшины в пределах брюшной полости
Действуя в качестве контейнеров для цитостатического препарата, частицы
защищают его от преждевременной дезактивации и контакта со здоровыми клетками,
а также продлевают период его выведения из организма [2]. Контролируемое и
пролонгированное высвобождение лекарства из частиц при оптимальной скорости и
режиме дозирования позволяет: увеличивать локальную концентрацию цитостатика в
раковых клетках и устранять необходимость в повторном вводе препарата.
Контейнеры в условиях осуществления локальной химиотерапии являются
источником для непрерывной подачи лекарства в непосредственной близости от
патологического очага, что дает возможность увеличивать эффективность терапии и
уменьшить побочные эффекты [3].
В настоящее время в качестве систем доставки лекарств, наибольший интерес
вызывают частицы на основе биоразлагаемых полимеров, такие как полимерные
сферы, мицеллы и полимеросомы. В качестве биоразлагаемых носителей для
получения таких частиц наибольшей перспективностью обладают синтетические
амфифильные сополимеры алифатических полиэфиров, таких как поли(молочная
кислота) или поли(капролактон) с гидрофильными полимерами. Системы доставки
лекарств на основе амфифильных сополимеров характеризуются высокой
стабильностью в кровяном русле, биосовместимостью с органами и тканями, а также
способностью разлагаться с образованием нетоксичных для организма
продуктов. Также использование синтетических биоразлагаемых полимеров в
качестве основы для частиц позволяет контролировать физико-химические
свойства контейнеров, такие как: размер, свойства поверхности и скорость
разложения полимерных носителей. Вариация природы полимера и его молекулярно-
массовых характеристик дает возможность контроля скорости высвобождения
лекарственных веществ.
Таким образом, целью данного исследования является: получение микро- и
наночастиц на основе амфифильных блок-сополимеров поли(этиленгликоля) с
молекулярной массой 5000 (ПЭГ-5000) с поли(молочной кислотой) ПЭГ-5000-б-ПМК
и поликапролактоном ПЭГ-5000-б-ПКЛ, способных эффективно инкапсулировать и
контролируемо высвобождать противоопухолевые препараты, а также сравнение
полученных контейнеров с носителями на основе гомополимеров ПМК и ПКЛ,
являющихся широко зарекомендованными себя стандартами в области биомедицины.
В рамках данного исследования будет использован новый противоопухолевый
препарат из группы алкилирующих соединений этилениминов — диоксадэт.
Достижение поставленной цели определило следующие задачи:
• получение амфифильных блок-сополимеров поли(капролактона) и поли(молочной
кислоты) с метиловым эфиром поли(этиленгликоля) и их гомополимеров с
различными молекулярными массами;
• анализ состава и молекулярно-массовых характеристик синтезированных
полимеров с использованием методов ЯМР-спектроскопии и гель-проникающей
хроматографии;
• разработка метода инкапсулирования лекарственного вещества – диоксадэта в
полимерные контейнеры на основе алифатических сложных полиэфиров и
получение микро- и наночастиц с заданными размерами методами одинарной
эмульсии и наноосаждения;
• определение размера и дзета-потенциала полученных частиц с использованием
методов динамического рассеяния света и анализа траектории частиц;
• изучение эффективности инкапсулирования и максимальной загрузки
противоопухолевого препарата в частицы в зависимости от природы и
молекулярной массы полимера, а также метода получения полимерных носителей.
1.Kumari A., Yadav S.K., Yadav S.C. Biodegradable polymeric nanoparticles based
drug delivery systems. Colloids Surfaces B Biointerfaces. 2010, 75 (1), 1–18.
Последние выполненные заказы
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!