Применение глубоких нейронных сетей к задаче трекинга для детектора GEM в эксперименте BM@N мегапроекта NICA

Щавелев Егор Михайлович
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Отслеживание частиц является актуальной проблемой в современных детекторах физики высоких энергий, производящих огромное количество данных, таких как эксперименты на будущем коллайдере NICA. Восстановление треков частиц является одной из важных частей таких экспериментов, но существующие алгоритмы трекинга плохо масштабируются с растущим потоком данных. В то же время новые эффективные методы отслеживания, основанные на графовых нейронных сетях (GNN), активно разрабатываются и тестируются в проекте HEP.TrkX в CERN, и одновременно с этим для детекторов GEM достигаются впечатляющие результаты в области рекуррентных нейронных сетей (RNN).
В настоящей работе представлен оригинальный подход с использованием GNN и некоторые улучшения подхода RNN для детектора GEM эксперимента BM@N мегапроекта NICA. Этот подход хорошо адаптирован для решения известной проблемы ложных срабатываний детектора, присущей стриповым детекторам, таким как GEM, с помощью оригинального применения алгоритма минимального связующего дерева. В работе представляются результаты обучения нейронных сетей, показывающие, что предложенные подходы работают корректно и эффективно.

Введение 4

1. Постановка задачи 7

2. Обзор существующих решений 8
2.1. Конформное отображение . . . . . . . . . . . . . . . . . . 9
2.2. Преобразование Хафа . . . . . . . . . . . . . . . . . . . . . 10
2.3. Прослеживание трека . . . . . . . . . . . . . . . . . . . . . 11
2.4. Метод наименьших квадратов . . . . . . . . . . . . . . . . 12
2.5. Фильтр Калмана . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6. Подходы на основе фильтра Калмана в наши дни . . . . 15
2.7. Подходы, использующие нейронные сети . . . . . . . . . 16
2.8. Вывод . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. Основная часть 20
3.1. Используемые технологии . . . . . . . . . . . . . . . . . . 20
3.1.1. Pandas . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2. PyTorch и TensorFlow . . . . . . . . . . . . . . . . . 21
3.2. Описание эксперимента BM@N мегапроекта NICA . . . . 22
3.2.1. Схема работы микрострипового детектора . . . . 23
3.2.2. Особенности реконструкции координат точек трека 24
3.3. Препроцессинг данных . . . . . . . . . . . . . . . . . . . . 25
3.4. Модификация рекуррентной сети для трекинга . . . . . . 28
3.5. Графовая нейронная сеть (GNN) . . . . . . . . . . . . . . 30
3.5.1. Итерации Edge-Node . . . . . . . . . . . . . . . . . 31
3.5.2. Сравнение использования GNN для GEM детекто-
ра и LHC . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6. Статистический анализ данных . . . . . . . . . . . . . . . 34
3.7. Минимальное остовное дерево . . . . . . . . . . . . . . . . 35
3.8. Результаты обучения . . . . . . . . . . . . . . . . . . . . . 38
3.8.1. Вывод . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Заключение 41

Список литературы 42

В ходе решения задач любого уровня сложности всегда появляется
необходимость работать с информацией̆. В современном мире зачастую
правильная обработка и интерпретация данных является ключом к ре-
шению многих проблем. Особенно актуально это будет и в ближайшем
будущем, так как близится новая эпоха намного более значительных
как по объему, так и по трудоемкости вычислений задач. И именно
из-за этого необходимо использовать самые современные способы и ин-
струменты для работы с такими огромными массивами данных.
В частности, экспериментальная физика высоких энергий и ядерная
физика требуют не только гигантских комплексов для распределенных
вычислений и соответствующих сетевых инфраструктур, но и того, что
является наиболее важным в контексте настоящей̆ работы – подходов
машинного обучения для поиска неочевидных закономерностей̆ в дан-
ных для получения наиболее вероятного прогноза изучаемых явлений.
Искусственные нейронные сети с их способностью к обучению и само-
обучению являются эффективными инструментами машинного обуче-
ния, поэтому физики накопили довольно обширный̆ опыт применения
различных нейронных сетей̆ во многих экспериментах: для распозна-
вания треков заряженных частиц, колец черенковского излучения, фи-
зических проверок гипотез и обработки изображений. Одной из основ-
ных составляющих частей современных экспериментов физики высоких
энергий является задача трекинга частиц в детекторах. При решении
такой задачи исследователи сталкиваются с большим количеством про-
блем, возникающих как на этапе работы с оборудованием детектора,
так и с проблемами отслеживания траекторий частиц.
Проблема восстановления траекторий пролёта элементарных частиц,
образовавшихся при взаимодействиях пучков в современных экспери-
ментах физики высоких энергий и ядерной физики, по данным, полу-
ченным в результате регистрации следов каждой частицы элемента-
ми электронных детекторов, является особенно важной и сложной для
физиков-экспериментаторов. Наиболее актуальными сейчас являются
эксперименты с тяжелыми ионами, позволяющие проверить физиче-
ские теории о свойствах барионной материи и ненайденным пока ее
состоянием, называемым кварк-глюонной плазмой. Такие эксперимен-
ты бывают двух типов: в одних пучок тяжелых ионов, разогнанных
ускорителем до субсветовой скорости, ударяет в мишень так, что про-
дукты взаимодействия в виде сотен и тысяч траекторий, называемых
треками, летят вперед в узком конусе и регистрируются в специальных
трековых детекторах. К такому типу относится эксперимент BM@N,
обработке трековых данных с которого посвящена настоящая диссер-
тация.
Другой тип экспериментов – коллайдерные, когда мишени нет, а со-
ударяются ионы разных зарядов, пучки которых разгоняются ускорителем-
коллайдером в противоположных направлениях так, чтобы после раз-
гона пучки могли столкнуться с удвоенной скоростью. К такому типу
относятся коллайдерные эксперименты, проводимые в ЦЕРНе на боль-
шом адронном коллайдере (БАК) и планируемые эксперименты MPD
и SPD, которые будут работать на коллайдере NICA в ОИЯИ. В отли-
чии от экспериментов с фиксированной мишенью, треки частиц, образо-
вавшихся при столкновении ионов, разлетаются в пространстве внутри
установки во все стороны под углами, распределенными в 4π.
Трековые детекторы в обоих типах экспериментов помещены внутрь
сильных магнитов, чтобы по искривлению траектории каждой части-
цы, образовавшейся в результате столкновения, определить ее импульс,
позволяющий идентифицировать эту частицу.
Трековые детекторы в экспериментах с фиксированной мишенью
состоят из координатных плоскостей, образованных электронными эле-
ментами, в которых появляется сигнал, наведенный пролетевшей рядом
частицей. В случае пиксельного детектора эти элементы состоят из ма-
лых ячеек – педов, регистрирующих двумерные координаты сигнала.
Однако из-за большой дороговизны таких детекторов, более популяр-
ными стали детекторы, состоящие из чувствительных линейных эле-
ментов – проволочек в электростатическом поле или тонких полосок –
стрипов на силиконовой подложке. Пролетевшая частица ”зажигает”,
т. е. активирует линию в координатной плоскости, а для получения
второй координаты нужна еще одна близкая плоскость с другим на-
правлением стрипов или проволочек. Пересечение зажженных линий
и даст нам координаты места близко от которого пролетела частица.
Следует сразу же отметить большое неудобство, которым приходится
платить за выбор более дешевых стриповых детекторов: когда частиц
много, то помимо реальных пересечений, соответствующих месту про-
лета частицы, появится еще на порядок больше ложных пересечений,
очень и очень засоряющих результаты измерений.
Таким образом, задача восстановления траекторий частиц в совре-
менных стриповых детекторах актуальна и в наши дни. Огромное коли-
чество «ложных» срабатываний при регистрации частиц в детекторах
такого типа, а отсюда необходимость их обработки с максимальной точ-
ностью наиболее эффективным образом, является одной из основных
проблем, которые будут возникать в ходе использования GEM детек-
тора эксперимента BM@N мегапроекта NICA. Решение такой задачи и
является целью настоящей работы.

В рамках магистерской диссертации были выполнены все постав-
ленные задачи.

1. Выполнен обзор существующих подходов к задаче трекинга ча-
стиц.

2. Разработан алгоритм препроцессинга модельных данных сгенери-
рованных для GEM детектора.

3. Разработан и протестирован подход к задаче трекинга с исполь-
зованием глубоких нейронных сетей.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Кирилл Ч. ИНЖЭКОН 2010, экономика и управление на предприятии транс...
    4.9 (343 отзыва)
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). С... Читать все
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). Сейчас пишу диссертацию на соискание степени кандидата экономических наук.
    #Кандидатские #Магистерские
    692 Выполненных работы
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Оксана М. Восточноукраинский национальный университет, студент 4 - ...
    4.9 (37 отзывов)
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политоло... Читать все
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политологии.
    #Кандидатские #Магистерские
    68 Выполненных работ
    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ

    Другие учебные работы по предмету