Top.Mail.Ru

Применение искусственных нейронных сетей в задаче прогнозирования опасных конвективных явлений

Токарева Ирина Олеговна
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В работе исследуется возможность прогнозирования таких опасных атмосферных явлений, как гроза, путем применения различных типов нейронных сетей к выходным данным полуторамерной численной модели конвективного облака. Рассматриваются четыре типа нейронных сетей: многослойный персептрон, персептронный комплекс, сеть радиально-базисных функций и вероятностная нейронная сеть. Наилучших результатов удалось достичь с использованием сети радиально-базисных функций. Точность прогнозирования в этом случае составила 91,6%, а среднеквадратическая ошибка – 0,069.

Введение 3

Постановка задачи 4

Обзор литературы 5

1 Численная модель конвективного облака 7
1.1 Процесс образования конвективных облаков . . . . . . . . . 7
1.2 Классификация численных моделей конвективных облаков . 9
1.3 Нестационарная полуторамерная модель конвективного облака 11

2 Формирование данных для исследования 13
2.1 Реализация алгоритма получения данных . . . . . . . . . . . 13
2.2 Данные . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Предварительная обработка данных . . . . . . . . . . . . . . 16

3 Применение нейронных сетей 18
3.1 Многослойный персептрон . . . . . . . . . . . . . . . . . . . . 18
3.2 Персептронный комплекс . . . . . . . . . . . . . . . . . . . . 21
3.3 Сеть радиально-базисных функций . . . . . . . . . . . . . . 25
3.4 Вероятностная нейронная сеть . . . . . . . . . . . . . . . . . 29

Выводы 31

Заключение 34

Список литературы 35

В настоящее время актуальна проблема прогнозирования таких опас-
ных конвективных явлений, как грозы, град и обильные осадки, в связи с
масштабом разрушений, которые они производят. Информация о наступ-
лении подобных явлений нужна в первую очередь аэропортам, авиакомпа-
ниям и службам МЧС.
Для прогнозирования таких явлений повсеместно используются со-
временные численные модели конвективных облаков. Существует множе-
ство моделей, отличающихся как степенью детализации описания микро-
физических процессов, так и размерностью.
Для научных исследований наибольший интерес представляют трех-
мерные модели с подробным описанием микрофизических и электрических
характеристик облака, которые с большой степенью детализации описыва-
ют процессы в облаках во всей сложности их взаимодействия и, следова-
тельно, должны обеспечивать наилучшее качество прогнозов. Однако их
использование для оперативного прогнозирования в небольших метеоро-
логических центрах, например, в метеорологических центрах аэропортов,
невозможно из-за отсутствия там необходимой вычислительной мощности,
которая нужна для проведения расчетов по таким моделям. Использование
моделей меньшей размерности и более низкой функциональности ставит
проблему определения вероятности развития грозы только путем анализа
рассчитанных значений динамических и микрофизических характеристик
облака, поскольку такие модели не имеют блока, описывающего электри-
ческие процессы.
В настоящее время методы машинного обучения считаются одним
из наиболее перспективных инструментов для установления связи между
выходными данными таких численных моделей и вероятностью появления
грозы, таким образом они являются эффективным инструментом для про-

В данной работе проведено исследование применения искусственных
нейронных сетей в задаче прогнозирования опасных конвективных явле-
ний.
Была выбрана наиболее подходящая численная модель, позволяю-
щая реализовать оперативный прогноз эволюции конвективного облака.
Написана программа, которая получает радиозондировки и преобра-
зует их в формат входных данных численной модели. С использованием
методов машинного обучения реализован алгоритм предварительной обра-
ботки выходных данных модели.
Прогнозирование опасных конвективных явлений (грозы) осуществ-
лялось с использованием четырех типов нейронных сетей: многослойного
персептрона, персептронного комплекса, сети радиально-базисных функ-
ций и вероятностной нейронной сети. Для каждого типа сети была найде-
на структура, с использованием которой получаются лучшие результаты.
Был проведен анализ полученных результатов, на основе которого сделан
вывод о том, что для осуществления прогнозирования грозы с использова-
нием нейронной сети лучше всего использовать сеть радиально-базисных
функций.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Екатерина С. кандидат наук, доцент
    4.6 (522 отзыва)
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    #Кандидатские #Магистерские
    1077 Выполненных работ
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа
    Алёна В. ВГПУ 2013, исторический, преподаватель
    4.2 (5 отзывов)
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическо... Читать все
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическое образование. В данный момент работаю преподавателем.
    #Кандидатские #Магистерские
    25 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Мария А. кандидат наук
    4.7 (18 отзывов)
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет... Читать все
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет, реклама, журналистика, педагогика, право)
    #Кандидатские #Магистерские
    39 Выполненных работ
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа

    Другие учебные работы по предмету