Применение искусственных нейронных сетей в задаче прогнозирования опасных конвективных явлений

Токарева Ирина Олеговна
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В работе исследуется возможность прогнозирования таких опасных атмосферных явлений, как гроза, путем применения различных типов нейронных сетей к выходным данным полуторамерной численной модели конвективного облака. Рассматриваются четыре типа нейронных сетей: многослойный персептрон, персептронный комплекс, сеть радиально-базисных функций и вероятностная нейронная сеть. Наилучших результатов удалось достичь с использованием сети радиально-базисных функций. Точность прогнозирования в этом случае составила 91,6%, а среднеквадратическая ошибка – 0,069.

Введение 3

Постановка задачи 4

Обзор литературы 5

1 Численная модель конвективного облака 7
1.1 Процесс образования конвективных облаков . . . . . . . . . 7
1.2 Классификация численных моделей конвективных облаков . 9
1.3 Нестационарная полуторамерная модель конвективного облака 11

2 Формирование данных для исследования 13
2.1 Реализация алгоритма получения данных . . . . . . . . . . . 13
2.2 Данные . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Предварительная обработка данных . . . . . . . . . . . . . . 16

3 Применение нейронных сетей 18
3.1 Многослойный персептрон . . . . . . . . . . . . . . . . . . . . 18
3.2 Персептронный комплекс . . . . . . . . . . . . . . . . . . . . 21
3.3 Сеть радиально-базисных функций . . . . . . . . . . . . . . 25
3.4 Вероятностная нейронная сеть . . . . . . . . . . . . . . . . . 29

Выводы 31

Заключение 34

Список литературы 35

В настоящее время актуальна проблема прогнозирования таких опас-
ных конвективных явлений, как грозы, град и обильные осадки, в связи с
масштабом разрушений, которые они производят. Информация о наступ-
лении подобных явлений нужна в первую очередь аэропортам, авиакомпа-
ниям и службам МЧС.
Для прогнозирования таких явлений повсеместно используются со-
временные численные модели конвективных облаков. Существует множе-
ство моделей, отличающихся как степенью детализации описания микро-
физических процессов, так и размерностью.
Для научных исследований наибольший интерес представляют трех-
мерные модели с подробным описанием микрофизических и электрических
характеристик облака, которые с большой степенью детализации описыва-
ют процессы в облаках во всей сложности их взаимодействия и, следова-
тельно, должны обеспечивать наилучшее качество прогнозов. Однако их
использование для оперативного прогнозирования в небольших метеоро-
логических центрах, например, в метеорологических центрах аэропортов,
невозможно из-за отсутствия там необходимой вычислительной мощности,
которая нужна для проведения расчетов по таким моделям. Использование
моделей меньшей размерности и более низкой функциональности ставит
проблему определения вероятности развития грозы только путем анализа
рассчитанных значений динамических и микрофизических характеристик
облака, поскольку такие модели не имеют блока, описывающего электри-
ческие процессы.
В настоящее время методы машинного обучения считаются одним
из наиболее перспективных инструментов для установления связи между
выходными данными таких численных моделей и вероятностью появления
грозы, таким образом они являются эффективным инструментом для про-

В данной работе проведено исследование применения искусственных
нейронных сетей в задаче прогнозирования опасных конвективных явле-
ний.
Была выбрана наиболее подходящая численная модель, позволяю-
щая реализовать оперативный прогноз эволюции конвективного облака.
Написана программа, которая получает радиозондировки и преобра-
зует их в формат входных данных численной модели. С использованием
методов машинного обучения реализован алгоритм предварительной обра-
ботки выходных данных модели.
Прогнозирование опасных конвективных явлений (грозы) осуществ-
лялось с использованием четырех типов нейронных сетей: многослойного
персептрона, персептронного комплекса, сети радиально-базисных функ-
ций и вероятностной нейронной сети. Для каждого типа сети была найде-
на структура, с использованием которой получаются лучшие результаты.
Был проведен анализ полученных результатов, на основе которого сделан
вывод о том, что для осуществления прогнозирования грозы с использова-
нием нейронной сети лучше всего использовать сеть радиально-базисных
функций.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    AleksandrAvdiev Южный федеральный университет, 2010, преподаватель, канд...
    4.1 (20 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    28 Выполненных работ
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ

    Другие учебные работы по предмету