Прогнозирование электропотребления по историческим данным

Бойков Артем Сергеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Работа посвящена изучению задачи краткосрочного прогнозирования потребления электроэнергии предприятием по историческим данным. Был произведен анализ различных методов и подходов к решению данной задачи. В рамках исследования были реализованы модели на основе множественной линейной регрессии, регрессии опорных векторов, алгоритма случайного леса, а также нейронных сетей с радиальными базисными функциями. Проведен сравнительный анализ результатов прогнозирования на основе различных моделей. Рассмотрены различные способы кодирования исторических, календарных и метеоданных и их влияние на точность прогноза по трем метрикам качества.

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Постановка задачи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Обзор литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Глава 1. Обзор методов прогнозирования . . . . . . . . . . . . . . . 8
1.1. Множественная линейная регрессия . . . . . . . . . . . . . . 8
1.2. Регрессия опорных векторов . . . . . . . . . . . . . . . . . . 9
1.3. Случайный лес . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4. Нейронные сети . . . . . . . . . . . . . . . . . . . . . . . . . 13
Глава 2. Подготовка данных . . . . . . . . . . . . . . . . . . . . . . . 15
2.1. Исторические данные . . . . . . . . . . . . . . . . . . . . . . 16
2.2. Календарные данные . . . . . . . . . . . . . . . . . . . . . . 16
2.3. Метеоданные . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4. Удаление недель с выбросами . . . . . . . . . . . . . . . . . 23
2.5. Кросс-валидация . . . . . . . . . . . . . . . . . . . . . . . . 23
Глава 3. Результаты . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1. Разработка моделей . . . . . . . . . . . . . . . . . . . . . . . 25
3.2. Анализ результатов прогнозирования . . . . . . . . . . . . . 26
3.3. Визуализация прогноза . . . . . . . . . . . . . . . . . . . . . 30
Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Приложение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

На современном рынке электроэнергии между ее производителями и
потребителями используются контракты. Эти контракты могут быть как дол-
госрочными, на несколько месяцев, и даже лет, так и краткосрочными с го-
ризонтом в одни сутки. Отклонение фактического потребления электроэнер-
гии от спрогнозированного объема влечет необходимость для предприятия
продажи излишнего или закупки недостающего объема электроэнергии по
заведомо невыгодным ценам. Поэтому задача планирования и прогнозирова-
ния энергопотребления является достаточно значимой в электроэнергетике,
и повышение точности этого прогнозирования может существенно снизить
затраты на покупку электроэнергии предприятием.
С развитием вычислительных технологий данная задача все чаще пе-
реходит от экспертных систем к системам автоматизированным, а новые ме-
тоды и алгоритмы машинного обучения и статистические модели позволяют
повышать точность этого прогноза, учитывать множество разных факторов и
находить сложные нелинейные зависимости в данных.
Таким образом, имеющей большое практическое применение и актуаль-
ной научно-технической задачей является разработка методик прогнозиро-
вания потребления электрической энергии на основе исторических и других
имеющихся данных.
Постановка задачи
Целью данной работы является построение модели для прогнозиро-
вания почасового потребления электроэнергии предприятием с горизонтом
прогноза в два дня на основе имеющихся исторических данных об электропо-
треблении и метеофакторах. Также, за это время имеются плановые значения
электропотребления, которые будут использоваться для вычисления метрик
качества построенной прогностической модели.
В связи с поставленной целью были рассмотрены следующие вопросы:

В данной работе был проведен обзор и анализ методов, применяемых
для краткосрочного прогнозирования потребления электроэнергии. Также,
были реализованы модели на основе множественной линейной регрессии, ре-
грессии опорных векторов, случайного леса и радиальных базисных нейрон-
ных сетей. Построенные модели были протестированы на основе имеющих-
ся реальных данных почасового потребления электроэнергии предприятием.
Был проведен анализ, визуализация и сравнение полученных результатов.
Для реализации программной части был использован язык программи-
рования Python 3.6 и библиотеки NumPy для работы с массивами и матема-
тическими функциями, Pandas для представления и обработки данных в виде
таблиц, Scikit Learn для реализации алгоритмов машинного обучения, Keras
для реализации нейронных сетей и Matplotlib для визуализации данных.
Для улучшения полученного результата можно рассмотреть добавление
дополнительных данных, таких как график работы предприятия и данные о
внутренних процессах. Также можно рассмотреть комбинированные методы
и разбиение данной задачи на несколько подзадач и построение отдельных
моделей для каждой из этих подзадач, например, строить отдельный про-
гноз для базового электропотребления предприятия и электропотребления
оборудования.

[1] Hong T. Short Term Electric Load Forecasting : дис. – North Carolina State
University, 2010.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Кирилл Ч. ИНЖЭКОН 2010, экономика и управление на предприятии транс...
    4.9 (343 отзыва)
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). С... Читать все
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). Сейчас пишу диссертацию на соискание степени кандидата экономических наук.
    #Кандидатские #Магистерские
    692 Выполненных работы
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ

    Другие учебные работы по предмету