Top.Mail.Ru

Разработка алгоритмов распознавания автомобильных номерных знаков в условиях слабой видимости

Шумилин, Олег Петрович Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Целью работы является повышение эффективности распознавания автомобильных номерных знаков на изображениях в условиях слабой видимости. Результаты работы могут быть использованы в организациях, занимающихся производством видеорегистраторов и соответствующим ПО.

ВВЕДЕНИЕ ……………………………………………………………………………………… 16

1 ТЕОРЕТИЧЕСКИЙ АНАЛИЗ ЗАДАЧИ РАСПОЗНАВАНИЯ
АВТОМОБИЛЬНЫХ НОМЕРОВ ………………………………………………………………… 18

1.1 Введение в предметную область ……………………………………………. 18

1.2 Обзор систем распознавания автомобильных номеров …………… 20

1.2.1 «Автомаршал»…………………………………………………………………. 20

1.2.2 «Спецлаб-Трафик» (SL-Traffic) ……………………………………….. 21

1.2.3 «SecurOS Auto» ……………………………………………………………….. 22

1.3 Тест систем распознавания автомобильных номеров …………….. 26

1.4 Алгоритмы и методы обработки изображений ………………………. 27

1.4.1 Фильтр Гаусса …………………………………………………………………. 27

1.4.2 Детектор Кэнни ……………………………………………………………….. 28

1.4.3 Детектор Хаара ……………………………………………………………….. 28

1.4.4 Гистограммы яркости………………………………………………………. 32

1.4.5 Сверточные нейронные сети ……………………………………………. 33

1.5 Библиотеки для обработки изображений ……………………………….. 36

1.5.1 OpenCV …………………………………………………………………………… 36

1.5.2 Tesseract ………………………………………………………………………….. 36

1.5.3 Caffe ……………………………………………………………………………….. 36

1.6 Заключение по аналитическому обзору …………………………………. 37

2 РАЗРАБОТКА АЛГОРИТМА РАСПОЗНАВАНИЯ НОМЕРНЫХ
ЗНАКОВ В УСЛОВИЯХ СЛАБОЙ ВИДИМОСТИ ……………………………………… 39

2.1 Общее решение задачи ………………………………………………………….. 39

2.2 Структурная схема и описание алгоритма ……………………………… 39

2.3 Цифровая обработка номерной пластины………………………………. 40
2.3.1 Преобразование в градации серого…………………………………… 40

2.3.2 Избавление от посторонних шумов ………………………………….. 41

2.3.3 Бинаризация ……………………………………………………………………. 41

2.3.4 Поиск контуров ……………………………………………………………….. 42

2.3.5 Исключение неинформативных областей…………………………. 42

2.3.6 Сегментация номерной пластины …………………………………….. 43

2.4 Разработка алгоритма для сравнения …………………………………….. 43

2.4.1 Поиск области автомобильного номера ……………………………. 43

2.4.2 Алгоритм нормализации угла наклона и масштаба …………… 48

2.4.3 Алгоритм поиска нижней границы автомобильного номера 49

2.4.4 Алгоритм поиска верхней границы автомобильного номера49

2.4.5 Алгоритм поиска боковых границ автомобильного номера . 50

2.4.6 Использование сверточной нейронной сети в задаче
распознавания символов ………………………………………………………………………. 50

3 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ ПРОГРАММНОГО
ОБЕСПЕЧЕНИЯ РАСПОЗНАВАНИЯ НОМЕРНЫХ ЗНАКОВ В УСЛОВИЯХ
СЛАБОЙ ВИДИМОСТИ……………………………………………………………………………… 52

3.1 Описание используемых технологий …………………………………….. 52

3.2 Программное обеспечение, реализующее алгоритм
распознавания номерных знаков в условиях слабой видимости ………………… 52

3.2.1 Архитектура программного обеспечения …………………………. 52

3.2.2 Микроархитектура программного обеспечения………………… 54

3.2.3 Распознавание символов ………………………………………………….. 55

3.2.4 Результаты работы программного обеспечения ……………….. 55

3.2.5 Вывод ……………………………………………………………………………… 56

3.3 Программное обеспечение реализующее доработанный алгоритм
13
3.3.1 Архитектура программного обеспечения …………………………. 56

3.3.2 Микроархитектура программного обеспечения………………… 57

3.3.3 Распознавание символов ………………………………………………….. 59

3.3.4 Результаты работы программного обеспечения ……………….. 60

3.3.5 Вывод ……………………………………………………………………………… 62

4 ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И
РЕСУРСОСБЕРЕЖЕНИЕ ……………………………………………………………………………. 63

4.1 Предпроектный анализ ………………………………………………………….. 63

4.1.1 Потенциальные потребители результатов исследования …… 63

4.1.2 Анализ конкурентных технических решений …………………… 64

4.1.3 QuaD-анализ ……………………………………………………………………. 65

4.1.4 SWOT-анализ ………………………………………………………………….. 66

4.1.5 Диаграмма Исикавы ………………………………………………………… 67

4.2 Определение возможных альтернатив разработки …………………. 68

4.3 Организация и планирование работ……………………………………….. 69

4.3.1 Продолжительность этапов работ…………………………………….. 69

4.3.2 Расчет накопления технической готовности …………………….. 74

4.4 Бюджет научно-технического исследования ………………………….. 74

4.4.1 Расчет материальных затрат …………………………………………….. 75

4.4.2 Расчет основной заработной платы исполнителей системы . 75

4.4.3 Расчет затрат по дополнительной заработной плате …………. 76

4.4.4 Расчет отчислений во внебюджетные фонды ……………………. 77

4.4.5 Расчет накладных расходов ……………………………………………… 77

4.4.6 Формирование бюджета затрат проекта …………………………… 78

4.5 Определение ресурсной (ресурсосберегающей), финансовой,
бюджетной, социальной и экономической эффективности исследования ….. 78
4.6 Вывод по разделу ………………………………………………………………….. 81

5 СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ ………………………………………. 82

5.1 Правовые и организационные вопросы обеспечения
безопасности ……………………………………………………………………………………………. 82

5.2 Производственная безопасность ……………………………………………. 83

5.2.1 Отклонение показателей микроклимата …………………………… 85

5.2.2 Недостаточная освещенность рабочей зоны …………………….. 86

5.2.3 Превышение уровня шума ……………………………………………….. 87

5.2.4 Опасные и вредные производственные факторы, связанные с
электромагнитными полями. ………………………………………………………………… 88

5.3 Психофизиологические факторы …………………………………………… 90

5.3.1 Повышенное значение напряжения в электрической цепи,
замыкание которой может произойти через тело человека…………………….. 90

5.4 Экологическая безопасность …………………………………………………. 91

5.5 Безопасность в чрезвычайных ситуациях ………………………………. 92

5.6 Выводы по разделу ……………………………………………………………….. 94

ЗАКЛЮЧЕНИЕ ………………………………………………………………………………… 95

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ …………………………….. 96

Приложение А ………………………………………………………………………………… 100

Приложение Б…………………………………………………………………………………. 112

Задача распознавания автомобильных номерных знаков востребована в
программном обеспечении для контроля въезда и выезда транспортных средств
с территории предприятий, парковок, контроля потока автотранспорта. Данное
программное обеспечение может быть размещено в автосервисах, на
контрольно-пропускных пунктах, пунктах контроля скорости.
Данная магистерская диссертация посвящена разработке и реализации
алгоритма распознавания автомобильных номеров. Задачу распознавания
автомобильных знаков можно разделить на две подзадачи: поиск номерного
знака и распознавание символов номерного знака. В основном распознавание
происходит в три этапа: предобработка изображения, сегментация и
непосредственно распознавание символов.
Предобработка изображения включает в себя выделение номерной
пластины и обработку специальными фильтрами, чтобы улучшить качество. С
помощью этапа сегментации выделяются символы, после чего происходит
распознавание каким-либо методом.
Предметом исследования являются методы искусственного интеллекта,
используемые в алгоритмах распознавания автомобильных номерных знаков. А
также исследование возможности применения искусственных нейронных сетей
в качестве классификаторов цифробуквенных символов автомобильных
номерных пластин.
Объектом исследования является технология распознавания
автомобильных номерных знаков на основе алгоритмов обработки
изображений и распознавания символов.
Целью данной работы является разработка алгоритма распознавания
номерных знаков в условиях слабой видимости (например в случаях, когда
номер находится не под прямым углом, когда сложно выделить границы самого
номера, а также, если масштаб номера довольно маленький) автотранспортных
средств и разработка программы, использующей данный алгоритм. Для
достижения поставленной цели необходимо:
• ознакомиться с методами распознавания текста на изображениях;
• разработать алгоритм для распознавания номерных знаков
автотранспортных средств в условиях слабой видимости;
• разработать программное обеспечение, использующее данный
алгоритм.
1 ТЕОРЕТИЧЕСКИЙ АНАЛИЗ ЗАДАЧИ РАСПОЗНАВАНИЯ
АВТОМОБИЛЬНЫХ НОМЕРОВ
Существует большое количество промышленного программного
обеспечения для распознавания автомобильных номеров. В данном разделе
предлагается краткий аналитический обзор некоторых программных
продуктов. Описание каждого продукта содержит информацию о названии,
области применения и используемых технологиях распознавания.
1.1 Введение в предметную область
Действующий государственный стандарт Российской Федерации
определяет 22 типа государственных регистрационных знаков (ГРЗ),
устанавливаемых на транспортные средства [1]. Стандарт определяет основные
размеры, а также технические требования к ГРЗ. Описанные в стандарте
технические требования направлены на обеспечение безопасности дорожного
движения, жизни, здоровья, сохранности имущества населения и охраны
окружающей среды. В данной работе рассматривается распознавание ГРЗ
первого типа с трехзначным и двухзначным кодом региона согласно
действующему стандарту РФ [1]. Распознавание остальных типов ГРЗ в данной
работе не рассматривается. Примеры ГРЗ типа 1 с двухзначным и трехзначным
кодом региона регистрации показаны на рисунках 1.1 и 1.2.

В данной работе проведен теоретический анализ задачи распознавания
автомобильных номеров, проведен обзор систем распознавания автомобильных
номеров с оценкой качества, после чего был сформирован набор требований.
После теоретического анализа разработан алгоритм распознавания
автомобильных номеров на языке программирования С++ с использованием
библиотеки OpenCV для предварительной обработки изображения и библиотеки
Tesseract для распознавания символов. Так как алгоритм имел ряд недостатков,
было решено его модернизировать. Модернизация включила в себя поиск
номерной пластины на изображении автомобиля, поиск границ автомобильного
номера, трансформацию изображения и распознавание с помощью сверточной
нейронной сети.
В конечном итоге было спроектировано и разработано два консольных
приложения, реализующих алгоритм распознавания автомобильных номеров в
условиях слабой видимости и доработанный алгоритм распознавания
автомобильных номеров в условиях слабой видимости. В первом случае процент
точности составил 83 процента, во втором – 92 процента.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы
    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа

    Другие учебные работы по предмету

    Модернизация системы автоматизации АСУ ТП АО «Farg’onaazot»
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Интеграционный сервис передачи данных между АСУ ТП и MES
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Методы сегментации новообразований головного мозга
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)