Разработка алгоритмов распознавания символов на изображениях табличек домов

Белков, Сергей Геннадьевич Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Целью работы является повышение эффективности распознавания символов на изображениях со сложным фоном. Результаты работы могут быть использованы в организациях, решающих задачи компьютерного зрения и распознавания символов.

ВВЕДЕНИЕ ……………………………………………………………………………………………… 14

1 АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ …………………………………………………… 15

1.1 Описание проблемы ………………………………………………………………………… 15

1.2 Описание адресных табличек ………………………………………………………….. 15

1.3 Описание машинного обучения ………………………………………………………. 17

1.4 Искусственные нейронные сети ………………………………………………………. 18

1.4.1 Общее описание ………………………………………………………………………. 18

1.4.2 Обобщенная структура ИНС ……………………………………………………. 19

1.4.3 Нейроны смещения ………………………………………………………………….. 22

1.4.4 Метод градиентного спуска ……………………………………………………… 25

1.4.5 Метод обратного распространения …………………………………………… 26

1.5 Описание сверточной нейронной сети …………………………………………….. 27

1.5.1 Свертка ……………………………………………………………………………………. 28

1.5.2 Субдискретизация ……………………………………………………………………. 29

1.5.3 Softmax ……………………………………………………………………………………. 30

1.6 Описание алгоритма ближайших соседей ………………………………………… 30

1.7 Анализ существующий решений……………………………………………………… 31

1.8 Вывод по разделу 1 …………………………………………………………………………. 32

2 РАЗРАБОТКА АЛГОРИТМА ………………………………………………………………. 33

2.1 Описание алгоритма ……………………………………………………………………….. 33

2.2 Предобработка изображения …………………………………………………………… 34

2.2.1 Преобразование в градации серого …………………………………………… 34

2.2.2 Пороговая классификация изображения …………………………………… 35

2.2.3 Поиск сегментов изображения …………………………………………………. 36
2.3 Выбор структуры ИНС ……………………………………………………………………. 37

2.3.1 Структура для распознавания таблички ……………………………………. 37

2.3.2 Структура для распознавания символа …………………………………….. 39

2.4 Формирование обучающей выборки ……………………………………………….. 40

2.5 Обучение ИНС………………………………………………………………………………… 41

3 ПРОГРАММНАЯ РЕАЛИЗАЦИЯ ………………………………………………………… 42

3.1 Используемые технологии ………………………………………………………………. 42

3.2 Программные модули ……………………………………………………………………… 42

3.2.1 Augment …………………………………………………………………………………… 43

3.2.2 KNN ……………………………………………………………………………………… 43

3.2.3 CNN ……………………………………………………………………………………… 43

3.2.4 Dataset ……………………………………………………………………………………… 43

4 ОБУЧЕНИЕ И ТЕСТИРОВАНИЕ …………………………………………………………. 44

4.1 Входные данные ……………………………………………………………………………… 44

4.2 Статистика обучения и распознавания …………………………………………….. 45

4.3 Демонстрация распознавания ………………………………………………………….. 46

5 ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И
РЕСУРСОСБЕРЕЖЕНИЕ…………………………………………………………………………. 49

5.1 Предпроектный анализ ……………………………………………………………………. 49

5.1.1 Анализ конкурентных технических решений ……………………………. 49

5.2 FAST-анализ …………………………………………………………………………………… 51

5.3 SWOT-анализ ………………………………………………………………………………….. 54

5.4 Оценка готовности проекта к коммерциализации…………………………….. 56

5.5 Инициация разработки ……………………………………………………………………. 57

5.6 Организация и планирование работ …………………………………………………. 59
5.6.1 Иерархическая структура работ ……………………………………………….. 59

5.6.2 План разработки ………………………………………………………………………. 59

5.6.3 Продолжительность этапов работ …………………………………………….. 60

5.6.4 Расчет нарастания технической готовности работ …………………….. 63

5.7 Расчет сметы затрат ………………………………………………………………………… 65

5.7.1 Расчет заработной платы………………………………………………………….. 65

5.7.2 Расчет отчислений от заработной платы …………………………………… 66

5.7.3 Расчет амортизации …………………………………………………………………. 66

5.7.4 Расчет накладных расходов ……………………………………………………… 67

5.7.5 Расчет общей сметы …………………………………………………………………. 67

5.8 Оценка научно-технического уровня НИР……………………………………….. 67

5.9 Вывод по разделу 5 …………………………………………………………………………. 70

6 СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ ………………………………………………… 71

6.1 Правовые и организационные вопросы обеспечения безопасности ….. 71

6.2 Правовые нормы трудового законодательства …………………………………. 71

6.2.1 Организационные мероприятия при компоновке рабочей зоны … 72

6.3 Производственная безопасность ……………………………………………………… 74

6.3.1 Отклонение показателей микроклимата……………………………………. 75

6.3.2 Превышение уровня шума ……………………………………………………….. 76

6.3.3 Недостаточность освещенности рабочей зоны ………………………….. 77

6.3.4 Повышенный уровень электромагнитных полей ………………………. 78

6.3.5 Повышенное значение напряжения в электрической цепи, замыкание
которой может произойти через тело человека. …………………………………… 79

6.4 Экологическая безопасность……………………………………………………………. 79

6.5 Безопасность в чрезвычайных ситуациях…………………………………………. 80
ЗАКЛЮЧЕНИЕ ……………………………………………………………………………………….. 83

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ …………………………………………. 84

ПРИЛОЖЕНИЕ А ……………………………………………………………………………………. 87

ПРИЛОЖЕНИЕ Б …………………………………………………………………………………… 100

Способность автоматически распознать адрес на фотографии с гео-
привязкой и связывать обработанный номер с известным адресом улицы,
помогает с высокой степенью точности определить местоположение здания.
Классическим примеров таких фотографий являются изображения с «Google
Street View» и «Яндекс.Панорамы», состоящие из большого количества
географически привязанных панорамных изображений.
Для решения задачи распознавания адресных табличек могут быть
применены искусственные нейронные сети (ИНС) с предварительной
обработкой изображения. Разработка алгоритма распознавания на основе ИНС
позволит достичь высокой скорости идентификации адреса для различных сфер
применения.
Целью данной работы является разработка алгоритма распознавания
адресных табличек домов с использованием нейронных сетей.
Задачи:
 Изучение форматов табличек домов
 Изучение средств и методов, необходимых для обработки и
распознавания изображений
 Разработка алгоритма

В работе представлен анализ существующих видов адресных табличек
домов. Составлен алгоритм для распознавания адресных табличек домов с
использованием сверточной нейронной сети. Для составления алгоритма
изучены методы обработки и классификации изображений. Алгоритм включает
в себя предобработку изображения, сегментирование и последующую
классификацию. В качестве алгоритма классификации было проведено
сравнение точностей распознавания между сверточной нейронной сетью и
алгоритмом ближайшего соседа, что показало целесообразность применения
сверточной нейронной сети. Составлена архитектура для двух сверточных
ИНС: для детектирования адресной таблички и для распознавания символов.
В качестве демонстрации алгоритмов разработано консольное
приложение на языке Python. В приложении реализованы как этап
предобработки изображения, так и классификации. Классификация сегментов
выполнена с помощью сверточной ИНС с обратным распространением ошибки
и функцией активации ReLU. Максимальная точность распознавания в ходе
экспериментов достигала 89%

1.ГОСТР52290-2004//Федеральноеагентствопотехническому
регулированию и метрологии. – Москва, 2006. – 125 с
2.Нейронные сети для начинающих [Электронный ресурс]. – URL:
https://habr.com/ru/post/312450/. (Дата обращения 15.03.2019).
3.Глава 3. Основы ИНС // Нейронные сети [Электронный ресурс]. – URL:
https://neuralnet.info/chapter/основы-инс (Дата обращения 15.03.2019).
4.Вишник М.И. Обобщенные функции // Соровосовский образовательный
журнал. – 1997. – №12. С. 112-117.
5.Знакомство с машинным обучением // Google stories [Электронный
ресурс].–URL:https://www.google.com/intl/ru/about/stories/machine-
learning-qa/. (Дата обращения 15.03.2019).
6.Преобразование цветного изображения в черно-белое // Программирование
на C, C# и Java [Электронный ресурс]. – URL: https://vscode.ru/prog-
lessons/preobrazovanie-tsvetnogo-izobrazheniya-v-cherno-beloe.html.(Дата
обращения 15.03.2019).
7.OpenCV[Электронныйресурс].–URL:https://opencv.org/.(Дата
обращения 15.03.2019).
8.Янковский А.А., Бугрий А.Н.. Критерии выбора метода бинаризации при
обработке изображений лабораторных анализов // Научно-технический
журнал «АСУ и приборы автоматики». – 2010. – №153. С. 53-56.
9.Пелевин Е.Е., Балясный С.В.. Оптимальные алгоритмы выделения
контуров изображения в системе технического зрения // Juvenis scientia. –
2016. – №6. С. 6-8.
10. Хайкин С. Нейронные сети. – 2-е изд. – М.: Вильямс, 2006. – 1103с
11. Джонс М. Программирование искусственного интеллекта в приложениях /
М.Джонс: Пер. с англ. Осипов А.И. – М.: ДМК Пресс, 2013. – 312 с
12. Градиентныйспуск[Электронныйресурс].–URL:
https://ru.wikipedia.org/wiki/Градиентный_спуск.(Датаобращения
15.03.2019).
13. Николенко С., Кадурин А., Архангельская Е. Глубокое обучение – 1-е изд.
– СПб.: Питер, 2018. – 480 с.
14.Street View and reCAPTCHA technology just got smarter [Электронный
ресурс]. – URL: https://security.googleblog.com/2014/04/street-view-and-recaptcha-
technology.html. (Дата обращения 20.04.2019).
15.Multi-digit Number Recognition from Street View Imagery using Deep
ConvolutionalNeuralNetworks[Электронныйресурс].–URL:
https://arxiv.org/abs/1312.6082. (Дата обращения 20.04.2019).
16.ImageNet Classification with Deep Convolutional Neural Networks
[Электронныйресурс].–URL:http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf.(Датаобращения
22.04.2019).
17.Нейронные сети для начинающих. [Электронный ресурс]. – URL:
https://habr.com/ru/post/313216/. (Дата обращения 22.04.2019).
18.Python. [Электронный ресурс]. – URL: https://www.python.org/. (Дата
обращения 10.03.2019).
19.OpenCV. [Электронный ресурс]. – URL: https://www.opencv.org/. (Дата
обращения 10.03.2019).
20.TensorFlow. [Электронный ресурс]. – URL: https://www.tensorflow.org/.
(Дата обращения 10.03.2019).
21.Трудовой кодекс Российской Федерации. [Электронный ресурс]. – URL:
http://www.consultant.ru/document/cons_doc_LAW_34683/.(Датаобращения
10.05.2019).
22.ГОСТ12.2.032-78.[Электронныйресурс].–URL:
http://docs.cntd.ru/document/1200003913/. (Дата обращения 10.05.2019).
23.ГОСТ12.2.061-81ССБТ.[Электронныйресурс].–URL:
http://docs.cntd.ru/document/gost-12-2-061-81-ssbt. (Дата обращения 10.05.2019).
24.СанПиН2.2.2/2.4.1340-03.[Электронныйресурс].–URL:
http://docs.cntd.ru/document/901865498. (Дата обращения 10.05.2019).
25.ГОСТ12.0.003-2015.[Электронныйресурс].–URL:
http://docs.cntd.ru/document/1200136071. (Дата обращения 10.05.2019).
26.ГОСТ12.0.003-2015.[Электронныйресурс].–URL:
http://docs.cntd.ru/document/1200136071. (Дата обращения 10.05.2019).
27.СанПиН2.2.4.548-96.[Электронныйресурс].–URL:
http://docs.cntd.ru/document/901704046. (Дата обращения 10.05.2019).
28.ГОСТ12.1.003-2014[Электронныйресурс].–URL:
http://docs.cntd.ru/document/1200118606. (Дата обращения 10.05.2019).
29.СанПиН2.2.4.3359-16[Электронныйресурс].–URL:
http://docs.cntd.ru/document/420362948. (Дата обращения 10.05.2019).
30.СанПиН2.2.1/2.1.1.1278-03[Электронныйресурс].–URL:
http://docs.cntd.ru/document/901859404. (Дата обращения 10.05.2019).
31.ГОСТ12.1.006–84[Электронныйресурс].–URL:
http://docs.cntd.ru/document/5200272. (Дата обращения 10.05.2019).
32.СанПиН2.2.2/2.4.1340–03[Электронныйресурс].–URL:
http://docs.cntd.ru/document/901865498. (Дата обращения 10.05.2019).
33.Николенко С., Кадурин А., Архангельская Е. Глубокое обучение – 1-е
изд. – СПб.: Питер, 2018. – 480 с.
34.КриницынаЗ.В.,ВидяевИ.Г.Финансовыйменеджмент,
ресурсоэффективность и ресурсосбережение / З.В. Криницына, И.Г. Видяев;
Томскийполитехническийуниверситет.–Томск:Изд-воТомского
политехнического университета, 2014. – 73 с

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Анна К. ТГПУ им.ЛН.Толстого 2010, ФИСиГН, выпускник
    4.6 (30 отзывов)
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помог... Читать все
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помогала студентам, вышедшим на меня по рекомендации.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Кирилл Ч. ИНЖЭКОН 2010, экономика и управление на предприятии транс...
    4.9 (343 отзыва)
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). С... Читать все
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). Сейчас пишу диссертацию на соискание степени кандидата экономических наук.
    #Кандидатские #Магистерские
    692 Выполненных работы
    Александра С.
    5 (91 отзыв)
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повы... Читать все
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повышении уникальности текста и оформлении библиографических ссылок по ГОСТу.
    #Кандидатские #Магистерские
    132 Выполненных работы
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ

    Другие учебные работы по предмету

    Модернизация системы автоматизации АСУ ТП АО «Farg’onaazot»
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Интеграционный сервис передачи данных между АСУ ТП и MES
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Методы сегментации новообразований головного мозга
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)