Разработка автоматизированного комплекса для исследования взаимодействия водорода с твердым телом

Саквин, Иван Отделение экспериментальной физики (ОЭФ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В процессе разработки были изучены схемы существующих устройств для исследования процессов сорбции и десорбции водорода в твердом теле. На основе существующих устройств была выбрана функциональная схема. Учитывая широкий ряд решаемых задач в области водородной энергетики была разработана принципиальная схема, отвечающая заявленным параметрам. Затем был произведен расчет основных узлов устройства на соответствие заявленным параметрам и сборка макета устройства. Завершающим этом является калибровка объемов основных узлов газового тракта. По полученным данным можно судить о высокой точности экспериментального оборудования.

Введение ………………………………………………………………………………………………………………………14
1 Теоретические основы взаимодействия водорода с твердыми телами ………………………….18

1.1 Накопление водорода из газовой фазы …………………………………………………………………18
1.2 Диффузия водорода …………………………………………………………………………………………….22
1.3 Термостимулированное газовыделение ……………………………………………………………….29
1.4 Принцип работы гравиметричских устройств для исследования процессов сорбции и
десорбции водорода в твердом теле…………………………………………………………………………..33
1.5 Принцип работы волюметрических устройств для исследования процессов сорбции
и десорбции водорода в твердом теле ……………………………………………………………………….37

2 Основные компоненты комплексов для исследования процессов взаимодействия
водорода с твердым телом …………………………………………………………………………………………….41

2.1 Пример гравиметрического комплекса для исследования процессов сорбции и
десорбции водорода в твердом теле…………………………………………………………………………..41
2.2 Примеры волюметрических комплексов для исследования процессов сорбции и
десорбции водорода в твердом теле…………………………………………………………………………..44

3 Разработка автоматизированного комплекса Gas Reaction Automated Machine …………….55

3.1 Разработка газового тракта ………………………………………………………………………………….55
3.2 Калибровка объемов газового тракта …………………………………………………………………..62
Выводы по главе 3 ……………………………………………………………………………………………………66

4 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение …………………….67

4.1 Потенциальные потребители результатов исследования ………………………………………67
4.2 Анализ конкурентных технических решений ……………………………………………………….69
4.3 SWOT-анализ ……………………………………………………………………………………………………..70
4.4 Оценка готовности проекта к коммерциализации …………………………………………………71
4.5 Методы коммерциализации результатов научно-технического исследования ……….73
4.6 Инициация проекта ……………………………………………………………………………………………..74
4.7 Планирование управления научно-исследовательского проекта …………………………..76
4.8 Бюджет научного исследования …………………………………………………………………………..78
4.9 Определение ресурсной, финансовой, бюджетной, социальной и экономической
эффективности исследования ……………………………………………………………………………………81

5 Социальная ответственность ………………………………………………………………………………………85
Введение ………………………………………………………………………………………………………………….85
5.1 Правовые и организационные вопросы обеспечения безопасности……………………….85

5.1.1 Специальные правовые нормы трудового законодательства ………………….85
5.1.2 Организационные мероприятия при компоновке рабочей зоны
исследователя ………………………………………………………………………………………………………87

5.2 Производственная безопасность ………………………………………………………………………….87
5.3 Анализ вредных и опасных факторов, которые могут возникнуть в лаборатории при
проведении исследований …………………………………………………………………………………………89

5.3.1Анализ вредных факторов …………………………………………………………………….89
5.3.2 Анализ опасных факторов ……………………………………………………………………96

5.3 Экологическая безопасность ……………………………………………………………………………….98
5.4 Безопасность в чрезвычайных ситуациях …………………………………………………………….98

5.4.1 Анализ вероятных ЧС, которые могут возникнуть в лаборатории при
проведении исследований …………………………………………………………………………………….98
5.4.2 Обоснование мероприятий по предотвращению ЧС и разработка порядка
действия в случае возникновения ЧС ………………………………………………………………….100

Выводы ………………………………………………………………………………………………………………………101
Заключение…………………………………………………………………………………………………………………103
Список использованных источников……………………………………………………………………………105
Приложение А …………………………………………………………………………………………………………….112

Исследование взаимодействия водорода с твердым телом представляет
интерес на протяжении длительного времени. Данное взаимодействие
рассматривается относительно двух направлений. С одной стороны, водород
оказывает негативное воздействие на кристаллическую структуру твердого
тела, следовательно, необходимо разрабатывать различные способы защиты
конструкционных материалов от пагубного воздействия водорода [1, 2, 3]. С
другой стороны, водород можно рассматривать как альтернативный источник
энергии [4, 5, 6]. Следовательно, встает вопрос безопасного хранения и
транспортировки водорода. Одними из перспективных методов хранения
водорода можно считать химические методы [7, 8, 9, 10]. К таким методам
относится хранение водорода в адсорбированном виде на поверхности
материала, абсорбированном виде в объеме материала и в химически
связанном виде (аммиак, фуллерены и т.д.).
В настоящее время изучено огромное количество материалов и
соединений способных накапливать в себе большое количество водорода.
Одним из эффективных материалов-накопителей водорода можно считать
гидридобразующие металлы и сплавы [11, 12]. Но зачастую данные материалы
имеют определенные недостатки, которые ограничивают их использование.
Также в качестве материалов накопителей водорода все чаще
рассматриваются композитные системы на основе металлов и сплавов, а также
органические соединения и структуры, обладающие высокой емкостью.
Например, различного рода углеродные наноструктуры (углеродные
нанотрубки, фуллерены и т.п.) и металл-органические каркасные структуры
MOF (Metal Organic Frameworks) [13, 14]. При исследовании материалов-
накопителей водорода важно знать кинетику поглощения водорода (кривые
сорбции) и PCI зависимости (зависимость концентрации водорода от
давления).
Для исследования сорбционных свойств различных материалов
существует различное экспериментальное оборудование, позволяющее
проводить эксперименты из различных агрегатных состояний (из электролита,
из газовой фазы и из плазмы). При электролитическом наводораживании
преобладает исследование только поверхностных процессов взаимодействия
металлов с водородом, а внедрение водорода из плазмы может происходить
только при малых давлениях, что ограничивает количество сорбированного
водорода. Следовательно, наиболее перспективным методом исследования
процессов сорбции водорода является внедрение водорода из газовой фазы.
Примерами устройств, использующих данный метод, являются
волюметрические и гравиметрические комплексы. Данные комплексы
способны выполнять исследования в широком диапазоне температур и
давлений.
Гравиметрические комплексы способны производить исследование
процессов взаимодействия водорода с большим количеством материалов.
Данные устройства отличаются достаточно низкой погрешностью измерений,
обусловленной использованием точных измерительных приборов и
программным обеспечением, учитывающем погрешности измерений
физических величин. Гравиметрические комплексы нашли широкое
применение в исследовании пористых материалов, в которых сложно
определить плотность материала, например, MOF, различные углеродные
нано-структуры и т.п. Однако данные устройства имеют ряд недостатков, а
именно сложное программно-аппаратное устройство, высокая цена некоторых
комплектующих и не высокая максимальная температура исследований
(порядка 400 °С).
Волюметрические комплексы также нашли широкое применение в
исследовании процессов взаимодействия водорода с твердыми телами.
Точность данных устройств ограничивается лишь точностью использующихся
измерительных приборов. Также они имеют ряд преимуществ, например, при
исследовании гидридообразующих материалов можно получить важную
информацию о характере реакции сорбции/десорбции, такую как гистерезис
сорбции/десорбции водорода и их скорости. Также в процессе исследования
данные устройства позволяют получить информацию о химическом составе
образующихся гидридов. Также при исследовании материалов с неизвестной
плотностью на базе данных устройств существует экспериментальный метод
определения плотности при известной массе.
Учитывая сложившуюся в Российской Федерации ситуацию,
существует необходимость разработки новых отечественных устройств для
исследования процессов взаимодействия водорода с твердыми телами. Для
этого необходимо иметь представление о принципе работы и программно-
аппаратном устройстве существующего экспериментального оборудования.
Целью данной работы является разработка программно-аппаратного
комплекса для исследования процессов взаимодействия газов с твердым
телом.
Исходя из цели были поставлены следующие задачи:
− Изучение существующих схем устройств для исследования
процессов сорбции и десорбции водорода в твердом теле;
− Выбор функциональной схемы устройства;
− Разработка принципиальной схемы устройства, отвечающей
конкретным параметрам;
− Расчет основных узлов устройства на соответствие заявленным
параметрам;
− Разработка эскиза проекта;
− Изготовление основных узлов устройства;
− Сборка макета устройства;
− Проверка устройства на соответствие заявленным параметрам;
− Калибровка объемов основных узлов газового тракта.
В данной работе произведен аналитический обзор принципов работы и
аппаратного устройства гравиметрического комплекса (XEMIS-100 фирмы
Hiden Isochema [15]), и нескольких волюметрических комплексов (Gas
Reaction Controller фирмы Advanced Materials Corporation [16];
волюметрический комплекс, разработанный лабораторией Purdue Hydrogen
Systems [17]; и волюметрический комплекс, разработанный командой
H.H.Cheng, X.X.Deng, S.L.Li, W.Chen, D.M.Chen, K.Yang [18]) с целью
определения основных принципов работы и нахождения как сильных, так и
слабых сторон устройств.

Исследование взаимодействия водорода с твердыми телами
представляет интерес на протяжении длительного времени. В настоящее время
изучено огромное количество материалов и соединений способных
накапливать в себе большое количество водорода. Одним из эффективных
материалов – накопителей водорода можно считать гидридобразующие
металлы и сплавы. Также в качестве материалов накопителей водорода все
чаще рассматриваются композитные системы на основе металлов и сплавов, а
также органические соединения и структуры, обладающие высокой емкостью.
Например, различного рода углеродные наноструктуры (углеродные
нанотрубки, фуллерены и т.п.) и металл – органические каркасные структуры
MOF (Metal Organic Frameworks).
Для исследования сорбционных свойств различных материалов
существует различное экспериментальное оборудование, позволяющее
проводить эксперименты из различных агрегатных состояний (из электролита,
из газовой фазы и из плазмы). При электролитическом наводораживании
преобладает исследование только поверхностных процессов взаимодействия
металлов с водородом, а внедрение водорода из плазмы может происходить
только при малых давлениях, что ограничивает количество сорбированного
водорода. Следовательно, наиболее перспективным методом исследования
процессов сорбции водорода является внедрение водорода из газовой фазы.
Устройства, использующие данный метод, способны производить
эксперименты в широком диапазоне температур и давлений. Одними из таких
устройств являются гравиметрические и волюметрические комплексы
исследующие процессы сорбции/десорбции водорода.
В данной работе был произведен выбор функциональной схемы
автоматизированного комплекса GRAM. Также на основе функциональной
схемы устройства и существующих аналогов была разработана
принципиальная схема, соответствующая конкретным параметрам.
Произведен расчет основных узлов на соответствие прочностным
характеристикам. Основываясь на данном расчете запас прочности газовой
камеры составляет 2,26 при ресурсе работы 10000 часов.
Использование отдельного тракта с газовым выходом позволяет
производить эксперименты на проницаемость различных газов сквозь
широкий класс материалов. Данная схема позволяет определять как время
диффузии газа сквозь материал, так и состав проходящей газовой смеси.
Калибровка объемов газового тракта показывает высокую точность
измерения термодинамических параметров системы, что говорит о
работоспособности данного устройства.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа
    AleksandrAvdiev Южный федеральный университет, 2010, преподаватель, канд...
    4.1 (20 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    28 Выполненных работ
    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Дмитрий М. БГАТУ 2001, электрификации, выпускник
    4.8 (17 отзывов)
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал стать... Читать все
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал статьи, патенты, кандидатскую диссертацию, преподавал. Занимаюсь этим с 2003.
    #Кандидатские #Магистерские
    19 Выполненных работ
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ

    Другие учебные работы по предмету

    Модифицирование поверхности полученного с помощью аддитивной технологии титанового сплава Ti-6Al-4V
    📅 2021год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Изучение процессов термостимулированного и неравновесного выхода изотопов водорода из Pd, Ni, Pt, Zr, Ti
    📅 2021год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)