Разработка библиотеки нейросетевого распознавания рукописных символов на машиночитаемых бланках

Шалаева, Алёна Александровна Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Обработка экзаменационных бланков в ручную занимает большое количество времени, а существующие программые продукты не удовлетворяют требуемому уровню точности распознавания. В следствие этого, вознилка необходимость разработки библиотеки нейросетевого распознавания, которая удовлетворяет требуемому уровню точности. С помощью разработанной библиотеки нейросетевого распознавания рукописных символов осуществляется обработка машиночитаемых бланков. Данная работа представляет интерес для организаций осуществляющих проверку экзаменационных бланков.

ВВЕДЕНИЕ ……………………………………………………………………………………………… 15
1 ОБЗОР АЛГОРИТМОВ И БИБЛИОТЕК НЕЙРОСЕТЕВОГО
РАСПОЗНАВАНИЯ…………………………………………………………………………………. 17
1.1 Искусственные нейронные сети…………………………………………………….. 17
1.1.1 Модель формального нейрона …………………………………………………. 17
1.1.2 Функция активации …………………………………………………………………. 18
1.1.3 Алгоритм обучения нейронной сети ………………………………………… 21
1.2 Архитектура нейронных сетей ………………………………………………………. 24
1.2.1 Нейросети прямого распространения ………………………………………. 24
1.2.2 Рекуррентные нейросети …………………………………………………………. 25
1.2.3 Сверточные нейронные сети ……………………………………………………. 26
1.3 Обзор библиотек машинного обучения …………………………………………. 30
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ ……………………………………………… 34
2.1 Обучающая выборка …………………………………………………………………….. 34
2.2 Определение оптимальных параметров для реализации CNN ………… 37
2.3 Проектирование логической модели системы ……………………………….. 40
3 РЕЗУЛЬТАТЫ ПРОВЕДЕННОГО ИССЛЕДОВАНИЯ ……………………….. 43
4 ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И
РЕСУРСОСБЕРЕЖЕНИЕ…………………………………………………………………………. 44
4.1 Предпроектный анализ …………………………………………………………………. 44
4.1.1 Потенциальные потребители результатов исследования ………….. 44
4.1.2 Анализ конкурентных технических решений …………………………… 46
4.1.3 QuaD-анализ ……………………………………………………………………………. 47
4.1.4 SWOT-анализ ………………………………………………………………………….. 49
4.2 Определение возможных альтернатив разработки …………………………. 50
4.3 Организация и планирование работ ………………………………………………. 51
4.3.1 Продолжительность этапов работ ……………………………………………. 53
4.3.2 Расчет накопления технической готовности …………………………….. 57
4.4 Бюджет научно-технического исследования ………………………………….. 58
4.4.1 Расчет материальных затрат…………………………………………………….. 58
4.4.2 Расчет основной заработной платы исполнителей системы ……… 59
4.4.3 Расчет затрат по дополнительной заработной плате …………………. 60
4.4.4 Расчет отчислений во внебюджетные фонды …………………………… 61
4.4.5 Расчет накладных расходов……………………………………………………… 61
4.4.6 Формирование бюджета затрат проекта …………………………………… 62
4.5 Определение ресурсной (ресурсосберегающей), финансовой,
бюджетной, социальной и экономической эффективности исследования .. 62
4.6 Вывод …………………………………………………………………………………………… 65
5 СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ………………………………………………. 67
5.1 Производственная безопасность ……………………………………………………. 67
5.2 Вредные производственные факторы…………………………………………….. 68
5.2.1 Повышенный уровень электромагнитных излучений ………………….. 68
5.2.2 Повышенные показатели микроклимата ……………………………………… 69
5.2.3 Повышенный уровень шума ……………………………………………………….. 70
5.2.4 Недостаточность освещенности рабочей зоны …………………………….. 70
5.2.5 Психофизические факторы ………………………………………………………… 71
5.3 Опасные производственные факторы ……………………………………………. 72
5.3.1 Опасность поражения электрическим током ……………………………. 72
5.3.2 Опасность возникновения пожара……………………………………………. 73
5.4 Экологическая безопасность …………………………………………………………. 73
5.5 Безопасность в чрезвычайных ситуациях ………………………………………. 74
5.6 Правовые и организационные вопросы обеспечения безопасности … 74
ЗАКЛЮЧЕНИЕ ……………………………………………………………………………………….. 76
ПРИЛОЖЕНИЕ А ……………………………………………………………………………………. 80
ПРИЛОЖЕНИЕ Б …………………………………………………………………………………….. 90

В настоящее время для решения многих практических задач в
различных сферах человеческой деятельности широкое распространение
получили нейронные сети. Данные модели искусственного интеллекта
используются при диагностике, прогнозировании, в решении
оптимизационных задач, а также в задачах распознавания образов и анализа
изображений. Обладая высокой аппроксимирующей способностью,
нейронная сеть, обучившись на экспериментальных данных, способна решать
поставленные задачи с высокой степенью точности.
Целью данной работы является разработка библиотеки нейросетевого
распознавания символов на машиночитаемых бланках.
Для достижения поставленной цели необходимо решить ряд задач:
изучение и анализ предметной области, выявление и документирование
требований к разрабатываемой библиотеке, проектирование архитектуры
ИНС, реализация функциональных возможностей и пользовательского
интерфейса.
Для решения данных задач, используются тип нейронных сетей,
называемый сверточным. Сверточная нейронная сеть (СНС) состоит из серии
слоев. Берётся изображение, пропускается через чередование свёрточных,
нелинейных слоев, и с помощью полносвязного слоя порождается вывод. В
качестве вывода может выступать класс или вероятность класса, которое
лучше всего описывает изображение.
В работе был проведен анализ уже существующих библиотек
нейросетевого распознавания. Вследствие, было принято решение разработки
данной библиотеки, позволяющей упростить процесс ее интеграции с
подсистемой предобработки и сегментации.
Объектом исследования в данной работе являет разработанная
сверточная нейросеть для распознавания объектов – рукописных символов.
Предметом исследования выступает разработка программного
продукта, содержащего в себе библиотеку нейросетевого распознавания.

Распознавание рукописного текста является одной из важнейших задач
при обработке машиночитаемых бланков. В качестве метода машинного
обучения были выбраны нейронные сети.
В данной работе был проведен сравнительный анализ использования
сверточной и простой нейронной сети, типа персептрон для распознавания
рукописных символов. В результате проведенных исследований было
установлено, что использования сверточной нейронной сети будет наиболее
оптимальным для распознавания рукописного текста. Преимуществом данной
сети является меньшее количество настраиваемых параметров и более высокая
точность распознавания символов.
Так же выявлена наиболее подходящая архитектура СНС.
Проанализированы алгоритмы оптимизации на основе метода градиентного
спуска. Выбрана функция активации нейронов. Произведено тестирование
уже существующих библиотек проводились с использованием базы данных
рукописных символов предоставленном предприятием, для которого был
разработан данный продукт.
Итогом проделанной работы является разработка библиотеки,
включающая в себя основные классы и функции необходимые для реализации
распознавания рукописных символов на машиночитаемых бланках. Точность
распознавания рукописных символов составила 96,4%.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Мария Б. преподаватель, кандидат наук
    5 (22 отзыва)
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальнос... Читать все
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальности "Экономика и управление народным хозяйством". Автор научных статей.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Ксения М. Курганский Государственный Университет 2009, Юридический...
    4.8 (105 отзывов)
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитыв... Читать все
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитывать все требования и пожелания.
    #Кандидатские #Магистерские
    213 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Екатерина С. кандидат наук, доцент
    4.6 (522 отзыва)
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    #Кандидатские #Магистерские
    1077 Выполненных работ
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы

    Другие учебные работы по предмету

    Модернизация системы автоматизации АСУ ТП АО «Farg’onaazot»
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Интеграционный сервис передачи данных между АСУ ТП и MES
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Методы сегментации новообразований головного мозга
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)