Разработка библиотеки нейросетевого распознавания рукописных символов на машиночитаемых бланках

Шалаева, Алёна Александровна Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Обработка экзаменационных бланков в ручную занимает большое количество времени, а существующие программые продукты не удовлетворяют требуемому уровню точности распознавания. В следствие этого, вознилка необходимость разработки библиотеки нейросетевого распознавания, которая удовлетворяет требуемому уровню точности. С помощью разработанной библиотеки нейросетевого распознавания рукописных символов осуществляется обработка машиночитаемых бланков. Данная работа представляет интерес для организаций осуществляющих проверку экзаменационных бланков.

ВВЕДЕНИЕ ……………………………………………………………………………………………… 15
1 ОБЗОР АЛГОРИТМОВ И БИБЛИОТЕК НЕЙРОСЕТЕВОГО
РАСПОЗНАВАНИЯ…………………………………………………………………………………. 17
1.1 Искусственные нейронные сети…………………………………………………….. 17
1.1.1 Модель формального нейрона …………………………………………………. 17
1.1.2 Функция активации …………………………………………………………………. 18
1.1.3 Алгоритм обучения нейронной сети ………………………………………… 21
1.2 Архитектура нейронных сетей ………………………………………………………. 24
1.2.1 Нейросети прямого распространения ………………………………………. 24
1.2.2 Рекуррентные нейросети …………………………………………………………. 25
1.2.3 Сверточные нейронные сети ……………………………………………………. 26
1.3 Обзор библиотек машинного обучения …………………………………………. 30
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ ……………………………………………… 34
2.1 Обучающая выборка …………………………………………………………………….. 34
2.2 Определение оптимальных параметров для реализации CNN ………… 37
2.3 Проектирование логической модели системы ……………………………….. 40
3 РЕЗУЛЬТАТЫ ПРОВЕДЕННОГО ИССЛЕДОВАНИЯ ……………………….. 43
4 ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И
РЕСУРСОСБЕРЕЖЕНИЕ…………………………………………………………………………. 44
4.1 Предпроектный анализ …………………………………………………………………. 44
4.1.1 Потенциальные потребители результатов исследования ………….. 44
4.1.2 Анализ конкурентных технических решений …………………………… 46
4.1.3 QuaD-анализ ……………………………………………………………………………. 47
4.1.4 SWOT-анализ ………………………………………………………………………….. 49
4.2 Определение возможных альтернатив разработки …………………………. 50
4.3 Организация и планирование работ ………………………………………………. 51
4.3.1 Продолжительность этапов работ ……………………………………………. 53
4.3.2 Расчет накопления технической готовности …………………………….. 57
4.4 Бюджет научно-технического исследования ………………………………….. 58
4.4.1 Расчет материальных затрат…………………………………………………….. 58
4.4.2 Расчет основной заработной платы исполнителей системы ……… 59
4.4.3 Расчет затрат по дополнительной заработной плате …………………. 60
4.4.4 Расчет отчислений во внебюджетные фонды …………………………… 61
4.4.5 Расчет накладных расходов……………………………………………………… 61
4.4.6 Формирование бюджета затрат проекта …………………………………… 62
4.5 Определение ресурсной (ресурсосберегающей), финансовой,
бюджетной, социальной и экономической эффективности исследования .. 62
4.6 Вывод …………………………………………………………………………………………… 65
5 СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ………………………………………………. 67
5.1 Производственная безопасность ……………………………………………………. 67
5.2 Вредные производственные факторы…………………………………………….. 68
5.2.1 Повышенный уровень электромагнитных излучений ………………….. 68
5.2.2 Повышенные показатели микроклимата ……………………………………… 69
5.2.3 Повышенный уровень шума ……………………………………………………….. 70
5.2.4 Недостаточность освещенности рабочей зоны …………………………….. 70
5.2.5 Психофизические факторы ………………………………………………………… 71
5.3 Опасные производственные факторы ……………………………………………. 72
5.3.1 Опасность поражения электрическим током ……………………………. 72
5.3.2 Опасность возникновения пожара……………………………………………. 73
5.4 Экологическая безопасность …………………………………………………………. 73
5.5 Безопасность в чрезвычайных ситуациях ………………………………………. 74
5.6 Правовые и организационные вопросы обеспечения безопасности … 74
ЗАКЛЮЧЕНИЕ ……………………………………………………………………………………….. 76
ПРИЛОЖЕНИЕ А ……………………………………………………………………………………. 80
ПРИЛОЖЕНИЕ Б …………………………………………………………………………………….. 90

В настоящее время для решения многих практических задач в
различных сферах человеческой деятельности широкое распространение
получили нейронные сети. Данные модели искусственного интеллекта
используются при диагностике, прогнозировании, в решении
оптимизационных задач, а также в задачах распознавания образов и анализа
изображений. Обладая высокой аппроксимирующей способностью,
нейронная сеть, обучившись на экспериментальных данных, способна решать
поставленные задачи с высокой степенью точности.
Целью данной работы является разработка библиотеки нейросетевого
распознавания символов на машиночитаемых бланках.
Для достижения поставленной цели необходимо решить ряд задач:
изучение и анализ предметной области, выявление и документирование
требований к разрабатываемой библиотеке, проектирование архитектуры
ИНС, реализация функциональных возможностей и пользовательского
интерфейса.
Для решения данных задач, используются тип нейронных сетей,
называемый сверточным. Сверточная нейронная сеть (СНС) состоит из серии
слоев. Берётся изображение, пропускается через чередование свёрточных,
нелинейных слоев, и с помощью полносвязного слоя порождается вывод. В
качестве вывода может выступать класс или вероятность класса, которое
лучше всего описывает изображение.
В работе был проведен анализ уже существующих библиотек
нейросетевого распознавания. Вследствие, было принято решение разработки
данной библиотеки, позволяющей упростить процесс ее интеграции с
подсистемой предобработки и сегментации.
Объектом исследования в данной работе являет разработанная
сверточная нейросеть для распознавания объектов – рукописных символов.
Предметом исследования выступает разработка программного
продукта, содержащего в себе библиотеку нейросетевого распознавания.

Распознавание рукописного текста является одной из важнейших задач
при обработке машиночитаемых бланков. В качестве метода машинного
обучения были выбраны нейронные сети.
В данной работе был проведен сравнительный анализ использования
сверточной и простой нейронной сети, типа персептрон для распознавания
рукописных символов. В результате проведенных исследований было
установлено, что использования сверточной нейронной сети будет наиболее
оптимальным для распознавания рукописного текста. Преимуществом данной
сети является меньшее количество настраиваемых параметров и более высокая
точность распознавания символов.
Так же выявлена наиболее подходящая архитектура СНС.
Проанализированы алгоритмы оптимизации на основе метода градиентного
спуска. Выбрана функция активации нейронов. Произведено тестирование
уже существующих библиотек проводились с использованием базы данных
рукописных символов предоставленном предприятием, для которого был
разработан данный продукт.
Итогом проделанной работы является разработка библиотеки,
включающая в себя основные классы и функции необходимые для реализации
распознавания рукописных символов на машиночитаемых бланках. Точность
распознавания рукописных символов составила 96,4%.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Алёна В. ВГПУ 2013, исторический, преподаватель
    4.2 (5 отзывов)
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическо... Читать все
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическое образование. В данный момент работаю преподавателем.
    #Кандидатские #Магистерские
    25 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Анна С. СФ ПГУ им. М.В. Ломоносова 2004, филологический, преподав...
    4.8 (9 отзывов)
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания... Читать все
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания и проверки (в качестве преподавателя) контрольных и курсовых работ.
    #Кандидатские #Магистерские
    16 Выполненных работ
    Ольга Б. кандидат наук, доцент
    4.8 (373 отзыва)
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских... Читать все
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских диссертаций, дипломных и курсовых работ. Слежу за новинками в медицине.
    #Кандидатские #Магистерские
    566 Выполненных работ
    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа

    Другие учебные работы по предмету

    Модернизация системы автоматизации АСУ ТП АО «Farg’onaazot»
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Интеграционный сервис передачи данных между АСУ ТП и MES
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Методы сегментации новообразований головного мозга
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)