Разработка системы анализа траекторий движения пешеходов методами искусственного интеллекта по данным камер видео наблюдения

Егорова Екатерина Романовна
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Сегодня технологии искусственного интеллекта используются в потребительских продуктах, таких как камеры смартфонов или камеры видеонаблюдения, где основной задачей компьютеров является идентификация объектов на изображениях. С развитием методов определения положения предметов на изображениях и видеозаписях, появилась необходимость отслеживания положения и перемещения людей, с целью дальнейшего использования этой информации в обеспечении безопасности и в маркетинге. В данной работе мы ставили цель разработать систему анализа траекторий движения пешеходов методами искусственного интеллекта по данным камер видео наблюдения, способной работать в режиме реального времени. В качестве инструментов были использованы: модель распознавания OpenPose, предсказание роста пешеходов в условиях потери данных методами линейного регрессора и многослойного персептрона и гомоморфное преобразование координат. В результате, мы получили клиент-серверное приложение, способное на запрос пользователя (видео с камер видеонаблюдения и координаты исследуемой области) возвращать полную информацию о трекинге пешеходов с кадров видео в границах запрашиваемой области и координаты для возможности восстановления трехмерной модели.

Введение ………………………………………………………………………………………………… 3
Постановка цели и задачи ……………………………………………………………………….. 5
Обзор литературы …………………………………………………………………………………… 6
Глава 1. Данные и использованные инструменты…………………………………….. 12
Глава 1.1 OpenPose ……………………………………………………………………………… 15
Глава 1.2. Преобразование координат …………………………………………………. 17
Глава 1.3. Линейная регрессия …………………………………………………………….. 21
Глава 1.4. Многослойный персептрон ………………………………………………….. 23
Глава 2. Распознавание поз ……………………………………………………………………. 25
Глава 3. Определение роста пешеходов в условиях потери данных ………….. 30
Глава 4. Перспективное преобразование координат………………………………… 35
Заключение …………………………………………………………………………………………… 43
Список литературы ………………………………………………………………………………… 44
Приложение

Сегодня технологии искусственного интеллекта используются во
многих областях: от фильтрации содержимого в социальных сетях до
биржевых роботов. Они все чаще присутствуют в потребительских продуктах,
таких как камеры смартфонов или камеры видеонаблюдения, где основной
задачей компьютеров является идентификация объектов на изображениях. В
решении таких задач все чаще приоритет отдается методам глубокого
обучения. Глубокие нейронные сети привели к прорывам в распознавании
образов на изображениях и видеозаписях. В течение многих лет, они доказали
свою эффективность по сравнению с другими методами распознавания.
Разработкой нейронных сетей занимались такие технологические гиганты, как
Google (сеть-игрок в игру го AlphaGo), Microsoft (ряд сервисов для
идентификации изображений), стартапы MSQRD, Prisma и другие.
С развитием методов определения положения предметов на
изображениях и видеозаписях, появилась необходимость отслеживания
положения и перемещения людей, с целью дальнейшего использования этой
информации в обеспечении безопасности и в маркетинге. Умея распознавать
позы и части тела людей, можно предсказывать девиантное поведение
отдельно взятых личностей в толпе, анализировать поведение покупателей,
отслеживать их перемещение в помещениях с целью дальнейшего логического
размещения товаров на полках или рекламных проспектов. Более того,
данные, полученные c помощью нейронный сетей можно отображать в
виртуальном трехмерном пространстве. Такое решение может быть
востребовано в среде разработки видеоигр, в частности, в симуляциях боев и
предсказаниях поведения пользователей-игроков. Методы глубокого
обучения предоставляют большие возможности для решения такого рода
задач.
В данной работе предлагалось, используя методы глубокого обучения
научиться распознавать части тела пешеходов на кадрах видео, взятых с камер
наблюдения и научиться получать траектории перемещения пешеходов.
Постановка цели и задачи

В данной работе мы ставили цель разработать систему анализа
траекторий движения пешеходов методами искусственного интеллекта по
данным камер видео наблюдения, способной работать в режиме реального
времени. Для достижения этой цели было поставлено несколько задач,
которые были успешно выполнены:
1. Были накоплены тестовых данных: видео, записанное статичной
камерой видео наблюдения в разных погодных условиях, на улицах, в
торговых центрах и в разное время суток;
2. Применена система, способной распознавать пешеходов на видео в
режиме реального времени;
3. Определены координаты ног (x; y) в двумерном пространстве;
4. Выполнено предсказание роста пешеходов в условиях потери данных;
4. Выполнено проективного преобразование координат для
отслеживания трекинга пешеходов и перенесения данных из двумерного в
трехмерное пространство;
5. Создано универсальное клиент-серверное приложение,
возвращающего координаты пешеходов для отображения этих данных в
трехмерном пространстве и изображение трекинга.
В результате, мы получили готовое клиент-серверное приложение,
способное обрабатывать запрос пользователя (путь к видео и координаты
исследуемой области) и возвращать полную информацию о трекинге
пешеходов с кадров видео в границах запрашиваемой области и координаты
для возможности восстановления трехмерной модели.

1.Ефимов, А.И. Алгоритм поэтапного уточнения проективного
преобразования для совмещения изображений. Компьютерная оптика. Т. 40,
№2. С. 258-265. 2016.
2.Граве Д. А. Гомография. Энциклопедический словарь Брокгауза и
Ефрона: в 86 т. (82 т. и 4 доп.). – СПб., 1890 – 1907.
3.Малков А.Н., Михайлов И.А., Штерн Г.П., “Восстановление
изображений,искажённыхперспективнымпреобразованием”//
Моделирование и анализ информационных систем, 16:2 (2009), 88–103.
4.Хартсхорн. Р. Основы проективной геометрии. — М.: Мир, 1970.
5.Andriluka M.; Roth S.; Schiele B. People-Tracking-by-Detection and
People-Detection-by-Tracking // InProc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2008.
6.Andriluka M. PoseTrack: a benchmark for human pose estimation and
tracking // InProc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.
7.Cao Zhe, Simon T., Wei Shih-En, Sheikh Y. Realtime Multi-Person 2D
Pose Estimation using Part Affinity Fields // InProc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) 2017.
8.Chen X., Yuille A. L. Articulated pose estimation by a graphical model
with image dependent pairwise relations // In Advances in Neural Information
Processing Systems, pages 1736–1744, 2014.
9.Chung Bryan WC. Pro Processing for Images and Computer Vision
with OpenCV, 2017.
10.Dantone M., Gall J., Leistner C., Van Gool L. Human pose estimation
using body parts dependent joint regressors // InProc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2013.
11.Hartley R., Zisserman A. Multiple View Geometry in Computer Vision,
2ed. Cambridge: Cambridge University Press, 2003.
12.Pudipeddi S., Chityala R. Image Processing and Acquisition using
Python by, Publisher. Chapman and Hall/CRC, 2015.
13.Simon T., Joo H., Matthews I., and Sheikh Y. Hand keypoint detection
in single images using multi view bootstrapping // InProc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.
14.Simonyan K., Zisserman A. Very deep convolutional networks for
large-scale image recognition. University of Oxford, 2015.
15.Wei Shih-En ; Ramakrishna V. ; Kanade T. ; Sheikh Y. . Convolutional
Pose Machines // InProc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.
16.Zhe Cao, Simon T., Wei Shih-En, Sheikh Y. OpenPose: Realtime
Multi-Person 2D PoseEstimation using Part Affinity Fields // InProc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2011.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Анна Н. Государственный университет управления 2021, Экономика и ...
    0 (13 отзывов)
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уни... Читать все
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уникальности с нуля. Все работы оформляю в соответствии с ГОСТ.
    #Кандидатские #Магистерские
    0 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Ольга Б. кандидат наук, доцент
    4.8 (373 отзыва)
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских... Читать все
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских диссертаций, дипломных и курсовых работ. Слежу за новинками в медицине.
    #Кандидатские #Магистерские
    566 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы

    Другие учебные работы по предмету