Разработка высокопроизводительного устройства размагничивания длинномерных изделий.

Болдырев, Петр Андреевич Отделение контроля и диагностики (ОКД)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Работа посвящена разработке устройства размагничивания, реализующее метод, основанный на использовании постоянного магнитного поля, корректируемого по измеряемым в процессе размагничивания начальной и остаточной намагниченностям, является наиболее приемлемым при поточном контроле изделий, либо конвейерном размагничивании, из-за высокого быстродействия, низкого энергопотребления и достаточно высокого качества размагничивания. После проведения размагничивания остаточная намагниченность находится в рамках не препятствующих проведению сварки (менее 0,01 Тл), и не вызывает налипания ферромагнитных частиц более 0,1 мм.

Введение ……………………………………………………………………………………………………… 11

1 Размагничивание. Способы размагничивания ферромагнитных изделий ……. 13

2 Методы размагничивания………………………………………………………………………………………………. 19

2.1 Нагрев до температуры точки Кюри ……………………………………………………….. 19

2.2 Размагничивание знакопеременным магнитным полем с убывающей до нуля
амплитудой …………………………………………………………………………………………………. 22

2.2.1 Практические конструкции установок и устройств для размагничивания
ферромегнитных сталей ………………………………………………………………………………. 25

2.2.2 Автоматические устройства размагничивания ………………………………….. 26

2.2.2.1 Демагнетизатор DS10M ……………………………………………………………………. 26

2.3 Размагничивание в постоянных магнитных полях обратной полярности …. 29

2.3.1 Демагнетизатор ДМ – 404 …………………………………………………………………….. 31

2.4 Комбинированный метод размагничивания…………………………………………….. 32

2.4.1 Устройства размагничивания FOERSTER EMAG M/EMAG F ……………… 32

3 Рекомендации по применению методов …………………………………………………….. 33

4 Экспериментальные исследования…………………………………………………………….. 34

4.1 Получение опытных данных для построения петель гистерезиса …………….. 34

5 Разработка принципиальной схемы …………………………………………………………… 38

5.1 Рассчет индукционной обмотки ……………………………………………………………… 38

5.2 Рассчет фильтра высоких частот …………………………………………………………….. 39

5.3 Выбор АЦП ……………………………………………………………………………………………. 39

5.4 Выбор микроконтроллера ………………………………………………………………………. 42

5.5 Рассчет обмотки намагничивания …………………………………………………………… 44

5.6 Расчет усилителя мощности …………………………………………………………………… 46
5.7 Выбор и подключение ЦАП……………………………………………………………………. 47

5.8 Выбор схемы индикации ………………………………………………………………………… 48

5.9 Построение связи микропроцессором с ПК …………………………………………….. 50

6 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение……. 54

6.1 Введение ………………………………………………………………………………………………… 54

6.2 Анализ конкурентных технических решений с позиции
ресурсоэффективности и ресурсосбережения……………………………………………….. 56

6.3 SWOT – анализ ……………………………………………………………………………………….. 59

6.4 План проекта ………………………………………………………………………………………….. 64

6.5 Бюджет научного исследования ……………………………………………………………… 66

6.5.1 Основная заработная плата ………………………………………………………………….. 68

6.5.2 Дополнительная заработная плата научно – производственного персонала
……………………………………………………………………………………………………………………. 71

6.6 Отчисления на социальные нужды …………………………………………………………. 72

6.7 Оплата работ, выполняемых сторонними организациями и предприятиями72

6.8 Накладные расходы………………………………………………………………………………… 73

6.9 Выводы по разделу…………………………………………………………………………………. 74

7 Социальная ответственность …………………………………………………………………….. 77

7.1 Введение ………………………………………………………………………………………………… 77

7.2 Производственная безопасность……………………………………………………………… 77

7.2.1 Анализ выявленных вредных факторов, возникающих при работе с
устройством ………………………………………………………………………………………………… 78

7.2.2 Анализ опасных факторов производственной среды………………………………81

7.3 Экологическая безопасность …………………………………………………………………… 83

7.4 Безопасность в чрезвычайных ситуациях ………………………………………………… 84
7.5 Правовые и организационные мероприятия обеспечения безопасности …… 85

7.5.1 Специальные (характерные для рабочей зоны исследователя) правовые
нормы трудового законодательства ……………………………………………………………… 85

7.5.2 Организационные мероприятия при компоновке рабочей зоны
исследователя ……………………………………………………………………………………………… 86

Заключение …………………………………………………………………………………………………. 88

Список публикаций студента ……………………………………………………………………….. 89

Список использованных источников ……………………………………………………………. 90

Приложение А ……………………………………………………………………………………………. 95

Приложение Б ……………………………………………………………………………………………. 113

«При осуществлении магнитного и вихретокового контроля изделий из
ферромагнитных материалов, как правило, применяется их намагничивание до
состояния близкого техническому насыщению. В первом случае эта операция
относится к числу основных для данного вида контроля, во втором –
осуществляется как вспомогательная для уменьшения влияния магнитных
неоднородностей на результаты контроля. Намагничивание изделий может
также произойти в результате сварочных работ, механической обработки,
использовании электромагнитов для перемещения или фиксации деталей и т.п.
При дуговой сварке конструкций из высокопрочных сталей нередко
наблюдается случаи возникновения «магнитного дутья». Оно является
следствием существования значительных магнитных полей в конструкциях и
нарушает стабильность процесса сварки, увеличивает разбрызгивание
электродного металла, ухудшает формирование шва»[1]. Известны случаи,
когда уровни магнитных полей столь велики, что процесс сварки становится
невозможным вследствие «сдувания» дуги и выброса жидкого металла
сварочной ванны. Опыт показывает, что швы, сварка которых сопровождалась
«магнитным дутьем», как правило, содержат дефекты, и в дальнейшем
необходима повторная заварка таких швов[2].
Магнитные поля в изделиях существенно усложняют и процесс
электроннолучевой сварки, отводя пучок электронов от места сварки или делая
его неуправляемым.
В то же время установлено, что максимальные значения индукции на
открытых кромках некоторых конструкций из высокопрочных сталей могут
достигать 0,01…0,017 Тл, а после сборки отдельных элементов под сварку, в
результате наложения магнитных полей, индукция в зазорах увеличивается в 5
– 10 раз и может превышать 0,1 Тл [5]. Сварка таких конструкций без
применения специальных средств уменьшающих воздействие магнитных
полей, практически невозможна.
Во всех случаях для дальнейшего использования изделия требуется их
размагничивание поскольку повышенная остаточная намагниченность может
вызвать нарушение нормальных условий работы близкорасположенных
приборов, повышенный износ трущихся намагниченных деталей из-за
налипания на их поверхность ферромагнитных частиц, препятствовать
проведению последующих технологический операций, таких как сборка
деталей в узлы, сварка, механическая обработка. Необходимость
размагничивания особенно актуальна для изделий из легированных сталей,
характеризующихся высокими значениями остаточной магнитной индукции и
коэрцитивной силы.
Необходимость размагничивания изделий, создания устройств и
методов, позволяющих его осуществить, появилась еще в 40-е годы при
разработке оборудования для магнитной дефектоскопии [6].
Достаточно размагниченными считались изделия, магнитное состояние
которых не приводило к нежелательным последствиям: искажению в работе
оборудования и приборов, интенсивному прилипанию опилок и т.д. В
большинстве случаев такие последствия не наблюдались при размагничивании
до (0,5…1,0)∙10−2 Тл.
В связи с развитием и широким внедрением электроннолучевой сварки,
повышением требований к качеству соединений потребовалось
размагничивание изделий до (1…5)∙10−4 Тл [3].
Новые высокопрочные конструкционные стали, выпуск которых
непрерывно растет, по магнитным свойствам следует отнести к магнитно –
жестким, коэрцитивная сила которых ≥8∙103 A/м. Повышенная
энерговооруженность производства с использованием различных
электротехнических устройств увеличивает вероятность неконтролируемого
трудно устранимого намагничивания заготовок из таких сталей при операциях
плазменной резки, механической обработки, наложения прихваток,
транспортировки и в условиях хранения на складах.
Существующие методы и средства промышленного размагничивания не
ориентированы на нужды конвейерного размагничивания изделий, что
приводит к их непригодности к встраиванию в транспортные рольганги
технологических потоков дефектоскопов. Основным критерием в этом случае
является низкая производительность демагнетизаторов. При скорости
вихретоковых дефектоскопов 2 – 6 м/c промышленные устройства
размагничивания имеют скорость не выше 1,5 м/c.
В данной работе будет представлен метод высокопроизводительного
размагничивания длинномерных цилиндрических изделий, показаны его
технологические возможности, преимущества и недостатки.
1 Размагничивание. Способы размагничивания ферромагнитных
изделий

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Александра С.
    5 (91 отзыв)
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повы... Читать все
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повышении уникальности текста и оформлении библиографических ссылок по ГОСТу.
    #Кандидатские #Магистерские
    132 Выполненных работы
    Анна Н. Государственный университет управления 2021, Экономика и ...
    0 (13 отзывов)
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уни... Читать все
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уникальности с нуля. Все работы оформляю в соответствии с ГОСТ.
    #Кандидатские #Магистерские
    0 Выполненных работ
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Егор В. кандидат наук, доцент
    5 (428 отзывов)
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Ск... Читать все
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Скорее всего Ваш заказ будет выполнен раньше срока.
    #Кандидатские #Магистерские
    694 Выполненных работы
    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ

    Другие учебные работы по предмету

    Разработка системы контроля параметров газоподачи в процессе добычи нефтепродуктов
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Магнитный контроль параметров ферромагнитных объектов методом высших гармоник
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка СВЧ плазмотрона для конверсии природного газа
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка проекта лаборатории технической томографии
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Дифракционный метод контроля диаметра протяженных изделий
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Моментный двигатель с ленточной намоткой
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка системы цифровой радиографии проводов для воздушных линий электропередач
    📅 2018год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)