Сейсмическая инверсия при помощи алгоритмов машинного обучения на примере Ваделыпского нефтяного месторождения
Целью данной работы является разработка алгоритма способного восстанавливать кривые акустического и плотностного каротажей из сейсмического отклика.
В процессе выполнения данной работы были написаны, программно реализованы и апробированы алгоритмы для проведения сейсмической инверсии, в ходе которой восстанавливаются плотностные и акустические каротажи.
По результатам восстановления кривых акустического и плотностного каротажей из сейсмической трассы сравнивались алгоритмы машинного и глубокого обучения. Ранее не использованный для решения аналогичных задач алгоритм продемонстрировал лучшие и стабильные результаты, после чего был рекомендован для применения на данном месторождении. Также проведен расчет экономического эффекта от использования данного подхода.
Сейсмическая инверсия является одним из ключевых шагов в ходе
разведки каждого месторождения. Благодаря инверсии появляется
возможность получить упругие свойства пород геологического разреза путем
конвертации, изначально записанного сейсмического импульса. Полученные
свойства пород тесно связаны с распределением скорости и плотности в
разрезе, которые являются параметрами акустического импеданса.
Традиционные методы сейсмической инверсии, такие как
детерминистический или стохастический, требует знания формы
сейсмического импульса, которая изменяется от скважины к скважине или
наличие построенной достаточно точной геологической модели.
Геофизические исследования скважин являются наиболее
репрезентативным источником информации связанным со свойствами пород,
особенно такие каротажи, как акустический и плотностной, несут в себе
крайне необходимую информацию о продуктивной части пласта.
Информация по данным каротажам может быть использована для получения
распределения пористости по скважине, а затем и проницаемости, знание
параметров ФЕС является неотъемлемой частью эффективной разработки
любого месторождения. Несмотря на то, что акустический и плотностной
каротажи несут в себе столь важную информацию, данные измерения
проводятся в скважинах достаточно редко. Принимая во внимания описаный
факт, в данной работе под сейсмической инверсией подразумевается
восстановление кривых акустического и плотностного каротажей из
сейсмической трассы.
Алгоритмы машинного обучения будут использованы для получения
плотностного и акустического отклика из сейсмической трассы.
Применяемые алгоритмы, как правило, основаны на статистическом анализе
данных и позволяют обобщить подход трансформации сейсмической записи
в соответствующие каротажные кривые. Также алгоритмы позволяют
избежать необходимости в подборе формы сейсмического импульса, также
других дополнительных входных данных для инверсии. С точки зрения
машинного обучения требуется решить задачу регрессии, которая
подразумевает прогнозирование ряда данных по входному ряду.
Значительную часть работы занимает сбор и подготовка входных данных, а
затем выбор оптимального алгоритма для восстановления кривых на данном
месторождении.
В качестве входных данных был предоставлен проект
рассматриваемого месторождения в Petrel. Проект включал в себя
приблизительно 300 скважин с индивидуальным набором каротажных
кривых и глубинный сейсмический куб. Для тренировки алгоритма
машинного обучения было отобрано 70 скважин. Для каждой отобранной
скважины была извлечена соответствующая сейсмическая трасса. В ходе
прогнозирования рассматривался 35 метров интервал продуктивной части.
Модели были созданы для алгоритмов: полиноминальная регрессия, XGBoost
и простейшая нейронная сеть, результаты которых сравнивались. Модель
XGBoost была рекомендована для данного месторождения для
восстановления кривых акустического и плотностного каротажей, а затем и
распределение пористости.
1. ОБЩИЕ СВЕДЕНИЯ О МЕСТОРОЖДЕНИИ
1. ДополнениектехнологическойсхемеразработкиВаделыпского
нефтяного месторождения ХМАО – Югры Тюменской области, 271 с.,
2017 г.
2. Hiren Maniar, Srikanth Ryali, Mandar S. Kulkarni, Aria Abubakar – Machine
learning methods in Geoscience, 2018 SEG International Exposition and
Annual Meeting, 14-19 p.
3. Jacob Pollock, Zachary Stoecker-Sylvia, Vinod Veedu – Machine learning for
Improved Directional Drilling, 2018 Offshore Technology Conference, 9 p.
4. Шолле Франсуа, Глубокое обучение на Python. — СПб.: Питер, 2018. —
400 с.
5. Рашка С., Python и машинное обучение / пер. с англ. А. В. Логунова. – М.:
ДМК Пресс, 2017. – 418 с.
6. Доусон М., Программируем на Python. – СПб.: Питер, 2014. – 416 с.
7. Paul C. H. Veeken, Ivan I. Priezzhev, Leo E. Shmaryan, Yan I. Shteyn,
Alexander Y. Barkov, and Yuri P. Ampilov – Nonlinear multitrace genetic
inversion applied on seismic data across the Shtokman field, offshore northern
Russia. GEOPHYSICS,VOL. 74, NO. 6 NOVEMBER-DECEMBER 2009, 11
p.
8. I. Priezzhev, E. Stanislav – Application of Machine Learning Algorithms Using
Seismic Data and Well Logs to Predict Reservoir Properties, 80th EAGE
Conference & Exhibition 2018 11-14 June 2018, 6 p.
9. Oyewande Akinnikawe, Stacey Lyne, Jon Roberts – Synthetic Well Log
Generation Using Machine Learning Techniques, URTeC: 2877021, 16 p.
10. Okunev M.V., Sukhanov R.A. – Deep learning for interwell properties
prediction with the involvement of 3D seismic data, NIS GeoConference, 4p.
11. Motaz Alfarraj, Ghassan AlRegib – Petrophysical Property Estimation from
Seismic Data Using Recurrent Neural Networks, SEG Technical Program
Expanded Abstracts 2018, 2141-2146 p.
12.И.К. Кондратьев, В.И. Рыжков, Ю.М. Киссин, А.В. Шубин – Способы
реализации и оценка эффективности сейсмической инверсии: Учебное
пособие. – М.: Издательский центр РГУ нефти и газа имени И. М.Губкина,
2011.- 62 с.
13. ГОСТ 12.0.003-74. Система стандартов безопасности труда. Опасные и
вредные производственные факторы. Классификация.
14. ГОСТ 12.1.005-88. Система стандартов безопасности труда. общие
санитарно-гигиенические требования к воздуху рабочей зоны
15.ГОСТ 12.4.011-89. Система стандартов безопасности труда. Средства
защиты работающих. Общие требования и классификация
16.СНиП 23-05-95 – Естественное и искусственное освещение.
17.ГОСТ 12.1.003-76 ССБТ. Шум. Общие требования безопасности.
18.СанПиН 2.2.2/2.4.1340-03. Гигиенические требования к персональным
электронно-вычислительным машинам и организации работы.
19.СНиП 41-01-2003 – Отопление, вентиляция, кондиционирование.
ЗАКЛЮЧЕНИЕ
Последние выполненные заказы
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!