Синтезирование и восстановление каротажных кривых с помощью алгоритмов машинного обучения

Иванцов, Александр Александрович Отделение нефтегазового дела (ОНД)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Информация, получаемая при исследовании скважины акустическими и плотностными методами, является ценной при дальнейшей интерпретации литологии, подсчете запасов и создания геологической модели. К сожалению, не на всем фонде скважин проводиться специальный комплекс ГИС, в который включены акустические и плотностные каротажи. Обычно синтез данных кривых производится с использованием эмпирических зависимостей, которые, во-первых, дают не всегда точный результат, а во-вторых, не могут применяться повсеместно. В работе предлагается использовать алгоритмы машинного обучения для синтезирования кривых ГИС, ввиду высокой точности получаемых результатов, повсеместного использования и анализа скрытых связей между множеством параметров.

ВВЕДЕНИЕ……………………………………………………………..……16

1. ПОСТАНОВКА ПРОБЛЕМЫ ИССЛЕДОВАНИЯ……………….17

2. ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТОВ
ИССЛЕДОВАНИЯ…………………………………………………19

3. ВОССТАНОВЛЕНИЕ ДАННЫХ ПРИ ПОМОЩИ
ЭМПИРИЧЕСКИХ ЗАВИСИМОСТЕЙ………………………….22

4. ОПИСАНИЕ ОСНОВ И АЛГОРИТМОВ МАШИННОГО
ОБУЧЕНИЯ………………………………………………………….27

5. АНАЛИЗ УСТОЙЧИВОСТИ СИНТЕТИЧЕСКИХ
КАРОТАЖНЫХ КРИВЫХ И ИХ ПРОИЗВОДНЫХ…………….43

6. ФОРМИРОВАНИЕ ПРИЗНАКОВОГО ПРОСТРАНСТВА………45

7. ТЕСТИРОВАНИЕ АЛГОРИТМОВ НА ПРОМЫСЛОВЫХ
ДАННЫХ…………………………………….………………..….…46

8. АНАЛИЗ РЕЗУЛЬТАТОВ СИНТЕЗИРОВАНИЯ………………..49

9. ФИНАНСОВЫЙ МЕНЕДЖМЕНТ,
РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ……55

10.СОЦИАЛЬНАЯ ОТВЕТСВЕННОСТЬ……………………………62

ЗАКЛЮЧЕНИЕ…………………………………………………….…..…..…69

СПИСОК ЛИТЕРАТУРЫ………………………………………………..…..72

ПРИЛОЖЕНИЕ А…………………………………………………….…..…..75
ПРИЛОЖЕНИЕ В……………………………………………………..……76

ПРИЛОЖЕНИЕ С…………………………………………………………..77

ПРИЛОЖЕНИЕ Д……………………………………………….………….79

ПРИЛОЖЕНИЕ Е……………………………………………………………80

ПРИЛОЖЕНИЕ Ж……………………………………………….………….81

ПРИЛОЖЕНИЕ З…………………………………………………………….89

ПРИЛОЖЕНИЕ И………..………………………………………….………91

ПРИЛОЖЕНИЕ К…………………….…………………………….……….93

ПРИЛОЖЕНИЕ Л……………………………….…………………………..95

ПРИЛОЖЕНИЕ М……………………………….…………………………..96

ПРИЛОЖЕНИЕ Л……………………………….…………………………..103

Объектом исследования является действующий фонд эксплуатационных
скважин компании «Газпромнефть». К рассмотрению представлен следующий
стандартный комплекс ГИС: нейтронный (НК), акустический (АК), гамма (ГК),
спонтанной поляризация (СП) и плотностной (RHOB) методы, плотностной и
акустический каротаж являются объектом синтеза из-за их физической
взаимосвязи. Предмет исследования – частичное или полное восстановление
данных ГИС на действующем и планирующимся к последующему бурению
фонду скважин при помощи алгоритмов машинного обучения (МО), с
минимальным стандартным комплексом данных ГИС, а именно ГК, СП, АК,
НК, RHOB.
Практическая значимость работы заключается в использование
общедоступных пакетов прикладных программ, способных реализовать
построения нейронной сети (НС) и случайного леса (СЛ). Использование
данных алгоритмов способствует генерации ценной информации,
использующейся в дальнейшем при интерпретации геологической,
петрофизической и сейсмической информации, а также создания
гидродинамической и геологической модели месторождения. Полученные
результаты данной работы подтверждаются восстановлением ряда каротажных
кривых на нескольких эталонных скважинах. Коэффициенты корреляции
синтетических кривых и экспериментальных имеют практический абсолютные
значения, что указывает на высокую степень достоверности полученной
информации.
Практическая значимость работы обусловлена снижением затрат,
направленных на проведение ГИС, оптимизацией времени обработки и
интерпретации геофизической информации.
1. ПОСТАНОВКА ПРОБЛЕМЫ ИССЛЕДОВАНИЯ

В работе рассмотрены и решены следующие задачи:
1. восстановление кривых плотностного и акустического каротажа с
помощью алгоритмов машинного обучения на реальном объекте
разработки;
2. сравнение результатов синтезирования кривых методами машинного
обучения и эмпирических уравнений;
3. сравнение точности прогнозирования данных ГИС алгоритмами
случайного леса и нейронной сети;
4. обоснование эффективности и универсальности применения методов
машинного обучения;
5. оценка экономического прироста и снижения негативного влияние на
окружающую среду.

Каротажные кривые синтезированы как на тренировочном объекте
(Шестаковский комплекс (4)), так и на действующем объекте разработки
(Крапивинское месторождение (5)). Сходимость эталонной и восстановленной
кривой лучше на данных Шестаковского комплекса, нежели чем на данных
Крапивинского месторождения, ввиду малого объема признакового
пространства и синтетической природы кривых (данные идеальны, шумы и
выбросы отсутствуют). Корреляция кривых, синтезированных на
Крапивинском месторождении, очень высокая, более 90 %, для алгоритма
случайного леса даже при минимальной базе тренировочной выборке, 10%, и
неудовлетворительная для нейронной сети, 40%, Приложение И. Принимая
последнее во внимание, рекомендуется в дальнейшем использовать алгоритм
случайного леса для прогнозирования кривых ГИС, или же нейронной сети, но
с тщательной настройкой признакового пространства и параметров вариации,
ввиду сильной чувствительности метода к флуктуации кривых входящих в
признаковое пространство.
Прогноз данных ГИС при помощи алгоритма случайного леса имеет
лучшую сходимость, чем кривые, спрогнозированные эмпирическим путем т.к.
в процессе прогнозирования данных ГИС, алгоритм случайного леса
генерирует множество ответов, кластеризует их на группы и усредняет
результаты. Группа, дающая наибольшую сходимость данных, формирует
окончательный результат.
Доказано, эмпирика имеет ряд ограничений и не может использоваться
повсеместно из-за её привязки к определенным кривым ГИС, отсутствия
керновых данных на ряде скважин и невозможности учесть все физические
факторы. Примером превосходства использования алгоритмов машинного
обучения над эмпирическими зависимостями для задач синтезирования
является сходимость кривых плотностного каротажа на скважине 508
Крапивинского месторождения алгоритмом случайного леса составляет 98%.
Синтезирование плотностного каротажа с помощью уравнения Гарднера-
Кастанье невозможно ввиду отсутствия данных для синтеза. Корреляция
акустического каротажа- 97% для случайного леса, -57% с использованием
методики Зеляева и 51% уравнения Фауста.
Алгоритмы машинного обучения являются универсальными, в связи с
простотой их использования, возможностью работы как с большим объемом
признакового пространства, так и с малым (6), прогнозированием данных
различных каротажных кривых независимо от их физической сущности, а
также возможность внедрить их на различные объекты разработки(5), где
эмпирические зависимости не работают. Главы 7 и 8, подтверждают
эффективность внедрения данных алгоритмов и подчеркивают невозможность
применения эмпирических зависимостей на Крапивинском месторождении.
Экономический прирост в самых приближенных оценках дает 168052.4
рублей со скважины (9), что также свидетельствует о целесообразности
применения МО для получения данных, тем самым значительно сокращая
время и затраты и, как результат, увеличивая экономический прирост проекта.
Синтез геофизической информации методами МО снижает до нуля
негативное влияние на окружающую среду (10), в связи с отсутствием
негативных фактов.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Кирилл Ч. ИНЖЭКОН 2010, экономика и управление на предприятии транс...
    4.9 (343 отзыва)
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). С... Читать все
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). Сейчас пишу диссертацию на соискание степени кандидата экономических наук.
    #Кандидатские #Магистерские
    692 Выполненных работы
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Егор В. кандидат наук, доцент
    5 (428 отзывов)
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Ск... Читать все
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Скорее всего Ваш заказ будет выполнен раньше срока.
    #Кандидатские #Магистерские
    694 Выполненных работы
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы

    Другие учебные работы по предмету

    Повышение надежности эксплуатации резервуаров путем внедрения новых конструктивных решений
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)