Спектральная инверсия, как инструмент динамического анализа сейсмического волнового поля

Мусралиев Арман Жарасович
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Целью работы является оценка применимости спектральной инверсии для динамической интерпретации сейсмических данных.
В ходе работы была осуществлена спектральная декомпозиция по двум алгоритмам (вейвлет-преобразование и спектральная инверсия) на модельных и реальных данных. Спектральная декомпозиция была выполнена с помощью языка программирования Python версии 3.7, в оболочке Jupyter. Результатами спектральной инверсии являются графики распределения амплитуд по отдельным гармоникам, частотные срезы, RGB-разрезы, а также срезы кубов коэффициентов аппроксимации (вейвлет-зависимых коэффициентов отражения). Выполнено сравнение двух алгоритмов вейвлет – анализа; спектральной инверсии и вейвлет-преобразования. Результаты спектральной инверсии позволяют более однозначно выделять в разрезе тонкие геологические объекты, палеоканалы, и конусы выноса, что является затруднительным при других методах спектральной декомпозиции.
Магистерская работа выполнена на 56 страницах, она включает в себя 29 иллюстраций, 2 таблицы. Структура работы представлена введением, тремя главами, заключением и списком литературы, который состоит из 17 литературных источников.

ВВЕДЕНИЕ ………………………………………………………………………………………………………….. 5
1 МЕТОДЫ СПЕКТРАЛЬНОЙ ДЕКОМПОЗИЦИИ …………………………………………….. 7
1.1 Преобразование Фурье ……………………………………………………………………………… 8
1.2 Вейвлет-преобразование………………………………………………………………………….. 11
1.3 Спектральная инверсия …………………………………………………………………………… 14
1.3.1 Требования к вейвлетам ……………………………………………………………………. 17
1.4 Визуализация результатов спектральной декомпозиции …………………………….. 19
2 ИССЛЕДОВАНИЕ АЛГОРИТМА СПЕКТРАЛЬНОЙ ИНВЕРСИИ НА
МОДЕЛЬНЫХ ДАННЫХ ……………………………………………………………………………………. 21
2.1 Моделирование волнового поля……………………………………………………………….. 21
2.2 Сопоставление амплитудных графиков и спектров вейвлет-преобразования и
спектральной инверсии …………………………………………………………………………………….. 23
2.3 Анализ информативности разрезов цветового смешивания (RGB)………………. 29
2.4 Использование коэффициентов отражения для повышения разрешающей
способности волнового поля……………………………………………………………………………… 32
3 ПРИМЕНЕНИЕ АЛГОРИТМА СПЕКТРАЛЬНОЙ ИНВЕРСИИ НА РЕАЛЬНЫХ
ДАННЫХ …………………………………………………………………………………………………………… 34
3.1 Геологическое описание района исследования ………………………………………….. 34
3.1.1 Литолого-стратиграфическая характеристика ……………………………………… 34
3.1.2 Тектоническое строение ……………………………………………………………………. 39
3.2 Описание сейсмических данных ………………………………………………………………. 42
3.3 Результаты спектральной инверсии на реальных данных …………………………… 44
ЗАКЛЮЧЕНИЕ …………………………………………………………………………………………………… 53
СПИСОК ЛИТЕРАТУРЫ: ……………………………………………………………………………………. 55

Информация о частотном составе сейсмических записей широко применяется
при динамической интерпретации волнового поля для решения разных задач:
прогнозирования мощности коллектора, анализа тонких геологических объектов, таких
как палеоканалы и рифовые постройки, оценки затухания сейсмического сигнала, а
также для возможного прогнозирования углеводородов по особенностям частотного
состава [1].
Магистерская работа посвящена применению спектральной инверсии в качестве
инструмента динамического анализа сейсмического волнового поля.
Актуальность данной работы связана с использованием новых методов
интерпретации сейсмического волнового поля, в частности, обоснование использования
спектральной инверсии, как инструмента динамического анализа в сравнении со
стандартными методами частотной декомпозиции.
Цель исследования: оценка применимости спектральной инверсии для
интерпретации сейсмических данных.
Выполнение поставленной цели предусматривает решение ряда задач, которые
связаны с используемой методикой спектральной декомпозиции:
– Изучения разных методов спектральной декомпозиции;
– Оценка возможностей спектральной инверсии на модельных данных;
– Оценка эффективности применения спектральной инверсии на реальных
данных.
Решение задач позволит оценить применимость метода спектральной инверсии
для интерпретации сейсмических данных.
Алгоритмы вейвлет-преобразования и спектральной инверсии реализованы на
языке программирования Python, поэтому его изучение являлось дополнительной
задачей.
Научная новизна связана с развитием метода спектральной инверсии для
динамического анализа сейсмических данных, а также сравнение его со стандартными
подходами к спектральной декомпозиции.
Практическая значимость исследования связана с изучением и апробацией
нового подхода к спектральной декомпозиции волнового поля, а также возможности его
применения на модельных и реальных сейсмических данных.
Работа выполнена в объеме 56 страниц, в структуре работы выделено
несколько этапов, которые последовательно раскрыты в текстовой части выпускной
квалификационной работы.
Работа выполнялась с использованием материалов, предоставленных ООО
«Газпромнефть-НТЦ», где автор проходил производственную практику и стажировку.
На основании имеющейся научной литературы рассмотрены основные методы
спектральной декомпозиции волнового поля. В работе изучены теоретические основы
методов, их преимущества и недостатки. Современные методы частотного анализа
насчитывают несколько подходов, которые разделены на три класса. Первым классом
являются алгоритмы связанные с преобразованием Фурье – непосредственно
преобразование Фурье и его оконный аналог. Второй класс методов связан с вейвлет-
анализом – этот метод носит название вейвлет-преобразование. Третий класс связан с
вейвлет-анализом, однако отличается реализацией – этот класс называется спектральная
инверсия.
Вторым этапом является создание трехмерной модели выклинивающегося
пласта переменной акустической жесткости, с помощью математического
моделирования на языке программирования Python. Модельное волновое поле изучалось
при помощи двух методов спектральной декомпозиции (вейвлет-преобразование и
спектральная инверсия), что позволит оценить возможности спектральной инверсии на
модельных данных.
Также опробованы различные методы визуализации результатов декомпозиции
(графики амплитуд для отдельных гармоник, частотные срезы кубов, RGB-
визуализация) для установления оптимального подхода к визуализации.

В рамках исследования были рассмотрены теоретические основы методов
спектральной декомпозиции: преобразование Фурье, оконное преобразование Фурье,
вейвлет-преобразование, а также спектральная инверсия.
 Преобразование Фурье имеет ряд ограничений, основным из них является
отсутствие возможности локализации спектра сигнала по времени.
 Оконное преобразование позволяет отчасти избавиться от этих
ограничений, однако на результат преобразования влияет размер выбранного
окна.
 Вейвлет-преобразование лишено всех этих ограничений, оно позволяет с
достаточной точностью локализовать спектр сигнала по времени.
 Спектральная инверсия как разновидность вейвлет – анализа позволяет за
счет использования библиотеки вейвлетов наиболее точно локализовать спектр
сигнала.

Выполнено тестирование алгоритма спектральной инверсии на модельных
данных в виде куба синтетического волнового поля.
Получены следующие основные выводы:
 Графики амплитуд, построенные на основе спектральной инверсии,
позволяют однозначно локализовать аномалии волнового поля, связанные с
интерференцией отраженных волн при уменьшении мощности
выклинивающегося пласта.
 Визуализация методом RGB-смешивания результатов спектральной
инверсии не является информативной с точки зрения цветовой дифференциации
выклинивающегося пласта.
 Результаты спектральной инверсии обеспечивают высокую степень
подобия между коэффициентами отражения, восстановленными по
сейсмической трассе с применением алгоритма спектральной инверсии, и
исходными коэффициентами, заданными для модели, что делает метод
спектральной инверсии информативным для определения этого коэффициента.
 Спектральная инверсия позволяет определить границы рефлекторов в
области минимальной временной мощности, а также получить новую
информацию для сейсмогеологического моделирования.
Выполнено тестирование алгоритма спектральной инверсии на реальных
сейсмических данных на месторождении в Ханты-Мансийском автономном округе).
Получены следующие оcновные выводы:
 При амплитудно-частотном анализе данных спектральная инверсия
показала, в целом, идентичный результат в сравнении с вейвлет-
преобразованием.
 Применение RGB визуализации результатов спектральной инверсии
является не эффективным, в виду худшей цветовой дифференциации в
сравнении с вейвлет-преобразованием, которое при данном методе
визуализации позволяет выделить конусы выноса.
 Полученные при спектральной инверсии коэффициенты отражения
позволяют детальнее картировать палеоканалы, которые составляют конусы
выноса в толще продуктивного интервала (ачимовские отложения
Черкашинской свиты). Использование этой характеристики позволяет
существенно повысить возможность определения геометрии выклинивающихся
пластов, палеорусел, каналов и других объектов, выделение которых при
стандартных подходах спектральной декомпозиции является затруднительным.

Мусралиев Арман Жарасович.
15.05.2020 г.

1.Буторин А.В. Сравнительный анализ методов спектральной инверсии
волнового поля на примере модельных трасс / А.В. Буторин, Ф.В. Краснов // Геофизика.
− 2016. − №4. – С. 68-76.
2.Буторин А.В. Изучение спектральных характеристик волнового поля на
примере модельных данных по результатам вейвлет-преобразования / А.В. Буторин //
Геофизика. − 2016. − №4. – С. 61-67.
3.БуторинА.В.,КрасновФ.В.,МихеенковА.В.Восстановление
коэффициентов отражения среды по сейсмическим данным при помощи методов
машинного обучения // Вестник Евразийской науки, 2018 №1.
4.Граничин О.Н. «Рандомизация измерений и L1 оптимизация», СПбГУ,
2009.
5.Краснов Ф.В., Буторин А.В., Михеенков А.В. Уточнение постановки
задачи поиска позиций и амплитуд коэффициентов отражения среды по сейсмической
трассе // Вестник Евразийской науки, 2018 №3.
6.Федоров, Д. Ю. Программирование на языке высокого уровня Python :
учеб. пособие для прикладного бакалавриата / Д. Ю. Федоров. — 2-е изд., перераб. и доп.
— М.: Издательство Юрайт, 2019. — 161 с.
7.Яковлев А.Н. Введение в вейвлет-преобразования / А.Н. Яковлев. –
Новосибирск. – изд. НГТУ. – 2003. – 104 с.
8.Butorin A.V. Application of wavelet spectral decomposition for geological
interpretation of seismic data / A.V. Butorin // Journal of Geological Resource and Engineering.
– 2016. – vol. 4. – №5. – p. 231-241.
9.Calazans M. Use of Color Blend of seismic attributes in the Exploration and
Production Development – Risk Reduction [Электронный ресурс] / M. Calazans, P. Jilinski.
// SEG New Orleans Annual Meeting. – 2015.
10.Chakraborty A.D. Okaya, Frequency-time decomposition of seismic data using
wavelet based methods / A.D. Chakraborty // Geophysics. – 1995. – vol. 60. – p. 1906-1916
11.Daubechies I. Ten lectures on wavelets / I. Daubechies. – Society for Industrial
and Applied Mathematics. – 1992. – 357 p.
12.Gabor D. Theory of communication / D. Gabor // Journal of the Institute of
Electrical Engineers. – 1946. – p. 429–457.
13.Mallat, S., and Z. Zhang, 1992, Matching pursuit with time-frequency
dictionaries: Technical Report 619, IEEE Transactions in Signal Processing, 41, 3397-3415.
14.Morlet J. Wave propagation and sampling theory – Part I: Complex signal and
scattering in multilayered media / J. Morlet, G. Arens, E. Fourgeau, D. Giard. // Geophysics. –
1982. – vol. 47. – p. 203–221.
15.Morlet J. Wave propagation and sampling theory—Part II: sampling theory and
complex waves / J. Morlet, G. Arens, E. Fourgeau, D. Giard. // Geophysics. – 1982. – vol. 47.
– p. 222-236.
16.McArdle N.J. Understanding seismic thin-bed responses using frequency
decomposition and RGB blending / N.J. McArdle, M.A. Ackers. // First break. – 2012. – vol.
30. – p. 57-65.
17.Polikar R. (пер.Грибунина В.Г.) Введение в вейвлет-преобразование // Iowa
State University – 2006. – .59 с.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Мария А. кандидат наук
    4.7 (18 отзывов)
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет... Читать все
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет, реклама, журналистика, педагогика, право)
    #Кандидатские #Магистерские
    39 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ

    Другие учебные работы по предмету

    Вызванная поляризация глины
    📅 2021год
    🏢 Санкт-Петербургский государственный университет
    Граптолиты ордовика бассейна р. Жданова (Восточный Таймыр)
    📅 2020год
    🏢 Санкт-Петербургский государственный университет