Структуры комодулей на кольцах Чжоу флаговых многообразий

Сюн Жуй
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Мы описываем отображение колец Чжоу α*: CH*(G/B) → CH*(G)⊗CH*(G/B), индуцированное групповым действием редуктивной группы G на ее флаговом многообразии G/B, в терминах классов Шуберта. Мы вычисляем это отображение для групп типов G₂, F₄, E₆, and E₇ при помощи некоторого алгоритма. Из данного вычисления мы выводим формулу Коши для обобщенных двойных многочленов Шуберта для групп всех типов. Также мы устанавливаем связь с К-теорией, определяя для неё обобщенные двойные β-многочлены Гротендика, а также двойственные к ним. Наконец, мы приводим некоторую комбинаторную формулу для вычисления локализаций классов Шуберта, обобщающую формулу Билли.

1 Main Results 2
1.1 ComoduleStructures…………………………………… 2
1.2 ComputationalResults………………………………….. 3
1.3 EquivariantVersion …………………………………… 4
1.4 GeneralizedSchubertPolynomials ……………………………. 5
1.5 K-theoryAnalogy…………………………………….. 6
1.6 Generalizedβ-GrothendieckPolynomials…………………………. 7
1.7 GeneralizedBilleyFormula ……………………………….. 7
2 Geometric Part 8
2.1 MainReduction……………………………………… 8
2.2 DemazureOperators…………………………………… 10
2.3 Localization……………………………………….. 12
3 Algebraic Part 13
3.1 LeibnizRules………………………………………. 13
3.2 CauchyFormulas…………………………………….. 15
3.3 RelationtoConvolutionAlgebras…………………………….. 18
4 Combinatorial Part 19
4.1 PipeDreams ………………………………………. 19
4.2 GeneralizedBilleyFormula ……………………………….. 21
4.3 DualityinK-theory …………………………………… 23
5 Computational Part 24
5.1 TheAlgorithm ……………………………………… 24
5.2 ComputationsofA-typeandC-type …………………………… 26
5.3 ComputationsofG2 …………………………………… 27
5.4 ComputationsofF4 …………………………………… 28
5.5 ComputationsofE6 …………………………………… 29
5.6 ComputationsofE7 …………………………………… 32

1.1
Main Results
Comodule Structures
Let G be a connected complex reductive group, and B its Borel subgroup. The homogenous variety G/B is called the flag manifold of G.
Let W = NG(T )/T be the Weyl group and l the standard length function. For elements u, v, w ∈ W , we write the reduced decomposition w = u ⊙ v if w = uv and l(w) = l(u) + l(v).
For an element w ∈ W , we define the lower Schubert variety Σw to be the Zariski closure of BwB/B ⊆ G/B, and the (upper) Schubert variety Σw to be the Zariski closure of B−wB/B ⊆ G/B, where B− is the opposite Borel subgroup. It is well-known [Spr09] that the dimC Σw = codimC Σw = l(w). Furthermore, Σw and Σw are both isomorphic to affine linear spaces.
1.1.2 Let A•(X;R) be the Chow group of an algebra variety X, with coefficients in a commutative ring R. We denote CH•(X; R) the same ring but with degrees doubled. When R = Z, we will simply write CH•(X).
When X is smooth, there is a commutative ring structure over the Chow group. We will call it Chow ring in this case. For a closed subvariety Y of X, we denote [Y] the fundamental class of Y in CH•(X;R). Its degree is 2 times its complex codimension.
By the affine stratification theorem (for example [EH16]), the Chow ring of the flag variety G/B is freely generated by the Schubert classes [Σw] with w going through all elements of Weyl group W.
1.1.3 Let H•(X;R) be the cohomology ring of a space X with coefficients in a commutative ring R. When R = Z, we will simply write H•(X). We will denote the cup product by ⌣.
For any smooth algebraic variety X, there is a natural graded ring homomorphism ηX : CH•(X;R) → H•(X; R) sending the fundamental class [Y ] to the topological fundamental class (see [GH94]).
The affine stratification structure equips G/B a cellular structure thus ηG/B is an isomorphism.
1.1.4 We denote π∗ the map CH•(G/B; R) → CH•(G; R) induced by the natural projection π : G → G/B. By abuse of notation, we use the same name for the cohomology map H•(G; R) → H•(G/B; R).
Let α : G × G/B → G/B be the morphism of left action (g, xB) → gxB. Due to the relative affine stratification theorem, and the universal coefficient theorem, we have
CH•(G × G/B; R) = CH•(G; R) ⊗R CH•(G/B; R) H•(G × G/B; R) = H•(G; R) ⊗R H•(G/B; R).
We denote α∗ the natural map of Chow rings CH•(G/B; R) → CH•(G; R) ⊗R CH•(G/B : R) and the coho- mology map H•(G/B; R) → H•(G; R) ⊗R H•(G/B : R) induced by α.
1.1.1
1.1.5 By our discussion above, we have the following commuting diagram
• ooπ∗ • • • ooα∗ •
CH (G;R) CH (G/B;R) CH (G;R)⊗R CH (G/B;R) CH (G/B;R)
ηG/B ≀ ηG⊗ηG/B ηG/B ≀
ηG
H•(G; R) oo ∗ H•(G/B; R) H•(G; R) ⊗R H•(G/B; R) oo ∗
H•(G/B; R) As a result π∗ : H•(G/B; R) → H∗(G; R) factors through CH•(G; R). The same case for μ∗.
πα
1.1.6 The main result is
Theorem 1.1 The map α∗ induced by the left action α : G × G/B → G/B
w=u⊙v
is given by
The cohomology map α∗ has the same expression.
α∗ : CH•(G/B; R) −→ CH•(G; R) ⊗ CH•(G/B; R) [Σw] −→ π∗[Σu] ⊗ [Σv].
2
1.1.7 Let P be a standard parabolic subgroup P containing B. That is, P is given by a subset Θ of simple reflections of W. Let WP ⊆ W be the Weyl group generated by Θ. Then P = w∈WP BwB by the Tits system (see [Spr09]).
For the longest representative w for a coset wWP ∈ W/WP , we denote ΣwP the Zariski closure of B−wP/P ⊆ G/P. It is well-known the natural map Σw → ΣPw is an isomorphism. Then CH•(G/P) has a natural affine stratification structure, thus is freely generated by Schubert classes [ΣwP ] with w going through the longest representatives of all elements of W/WP . In particular ηG/P is an isomorphism, the natural map CH•(G/P;R)→CH•(G/B;R)inducedbyG/B→G/P maps[ΣwP]to[Σw],thusinjective. Thuswehavethe following
Corollary 1.2 The map αP∗ induced the left action G × G/P → G/P
αP∗ :CH•(G/P;R)−→CH•(G;R)⊗CH•(G/P;R)
is given by the same expression as in theorem 1.1.
1.1.8 When R be a field, it follows from [Gro58] that π∗ induces a surjection onto CH•(G; R), and CH•(G; R) is a subring of H•(G;R).
In this case, we denote μ∗ the natural map CH•(G; R) → CH•(G; R) ⊗R CH•(G; R) induced by the group multiplication μ : (x, y) → xy. We denote ν∗ the natural map CH•(G; R) → CH•(G; R) induced by the inverse μ : x → x−1. These two maps equip CH•(G) a Hopf algebra structure over R.
1.1.9 We can describe the Hopf structure of CH•(G;R) as follows.
Theorem 1.3 When R is a field, the Hopf structure of CH•(G;R) can be described by
and the antipode
μ∗ : π∗[Σw] −→
ν∗ : π∗[Σw] −→ (−1)l(w)π∗[Σw−1 ].
w=u⊙v
π∗[Σu] ⊗ π∗[Σv],
Note that the first assertion follows from Theorem 1.1.
1.1.10 Historically, the determination of the Hopf structure of compact Lie groups is quite tough. The classic approach is to use cohomology operators, see for example [IKT76]. The determination based on computer- assisted computation can be found in [DZ14], [DZ15]. The method using motives can be found in
1.2 Computational Results
1.2.1 Let Z(G) be the center of G. Then the quotient group G/Z(G) is semisimple of adjoint type and has the same flag variety as G’s by the natural morphism, for example [Spr09].
1.2.2 When R = Q, the map π∗ is trivial. That is, π∗ maps elements of positive degrees to 0. This follows from Borel’s presentation that H•(G/B;Q) is generated by the second Chern classes of G-equivariant line bundles. But pull back to G, it has to be trivial.
1.2.3 We will compute the case when G is semisimple, and R = Fp the finite field of p elements where p is a prime number.
We will give an explicit formula for π∗ and α∗ for A-type, C-type. We will develop an algorithm to compute π∗, see Algorithm 5.1.5, so that we can describe π∗ and α∗ for G2, F4 and some partial result for E6 and E7.
TheresultsofthispaperaresummarizedinTable1,wheredegxi =iinCH•(G;Fp).

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    user1250010 Омский государственный университет, 2010, преподаватель,...
    4 (15 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    21 Выполненная работа
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Антон П. преподаватель, доцент
    4.8 (1033 отзыва)
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публик... Читать все
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публикуюсь, имею высокий индекс цитирования. Спикер.
    #Кандидатские #Магистерские
    1386 Выполненных работ
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы

    Другие учебные работы по предмету

    Алгоритмы для динамических диаграмм Вороного
    📅 2021год
    🏢 Санкт-Петербургский государственный университет
    О локальных свойствах решений задач гидродинамики
    📅 2021год
    🏢 Санкт-Петербургский государственный университет
    Полнота биортогональных систем для нескольких интервалов
    📅 2021год
    🏢 Санкт-Петербургский государственный университет
    Задача размещения элементов цепи поставок
    📅 2021год
    🏢 Санкт-Петербургский государственный университет