Влияние ионной бомбардировки на формирование поверхностных слоев при азотировании в безводородной плазме газового разряда

Махмудалиев, Абдубанноб Рахмонали угли Отделение материаловедения (ОМ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В работе приведены результаты изучения процессов упрочнения стальных образцов в безводородной плазме низковольтного газового разряда в вакууме. В отличие от тлеющего разряда, широко применяемого в промышленных технологиях для проведения ионно-плазменного азотирования, в данном типе газового разряда из-за низкого давления заметно выражены эффекты распыления поверхности обрабатываемых деталей. Данное обстоятельство однозначно должно приводить к интенсификации диффузионных процессов. В работе описаны параметры оборудования, приводятся экспериментальные данные по измерениям шероховатости, микротвердости и структуре поверхностей легированных сталей. Отдельное внимание уделено вопросу азотирования закаленных сталей в данном типе разряда в диапазоне температур отпуска.

Стр.
ВВЕДЕНИЕ……………………………………………………………… 11
ГЛАВА 1. ПРИМЕНЕНИЕ АЗОТИРОВАНИЯ ДЛЯ
УПРОЧНЕНИЯ СТАЛЕЙ …………………………………………….. 13
1.1 Основные технические способы упрочнения стальных
деталей…………………………………………………………… 13
1.1.1. Термообработка металлов……………………………………… 14
1.1.2. Химико-термическая обработка……………………………….. 15
1.1.3. Вакуумные ионно – плазменные методы обработки
материалов……………………………………………………….. 16
1.2. Основные виды и технологии азотирования сталей………… 18
1.2.1. Азотирование сталей……………………………………………. 19
1.2.2. Основные виды азотирования…………………………………. 22
1.3. Азотирование в газовых электрических разрядах …….……….. 25
1.4. Свойства азотированных материалов и изделий…………….. 26
1.5. Постановка задач исследования……………………………….. 30
ГЛАВА 2. ОБОРУДОВАНИЕ ДЛЯ АЗОТИРОВАНИЯ СТАЛЕЙ,
МАТЕРИАЛЫ И МЕТОДИКИ ИССЛЕДОВАНИЯ.………………… 31
2.1. Оборудование для азотирования сталей в дуговом
разряде…………………………………………………………… 31
2.2. Материалы для исследования………………………………….. 33
2.3. Методика измерения микротвердости…………………………… 35
2.4. Определение шероховатости поверхности…………………… 36
2.5. Метод оптической металлографии……………………………… 39
2.6. Описание процесса подготовки образцов для
экспериментов…………………………………………………… 40
2.7. Физико-механические параметры исходных образцов………… 43
ГЛАВА 3. ВЛИЯНИЕ ОСОБЕННОСТЕЙ РЕЖИМОВ НА
ФОРМИРОВАНИЕ МОРФОЛОГИИ ПОВЕРХНОСТИ И
ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК
ЭКСПЕРИМЕНТАЛЬНЫХ ОБРАЗЦОВ …………………………… 46
3.1. Азотирование экспериментальных образцов в безводородной
плазме низковольтного газового дугового разряда …………… 46
3.2. Особенности упрочнения сталей в безводородной плазме
низковольтного газового разряда при токе I=90А …………… 49
3.3. Особенности упрочнения сталей в безводородной плазме
низковольтного газового разряда при токе I=60А……………….. 50
3.4. Особенности упрочнения сталей в безводородной плазме
низковольтного газового разряда при токе I=30А.…………….. 52
3.5. Особенности упрочнения сталей в безводородной плазме
низковольтного газового разряда при токе I=10А.…………….. 53
3.6. Исследований морфологии поверхности азотированного слоя
закаленной стали 40Х полученных при разных режимах
азотирования……………………………………………………… 55
3.6.1. Морфология поверхности образцов, изготовленных из
закаленной стали 40Х после азотирование в безводородной
плазме низковольтного газового дугового разряда при токе
I=90А и температуре 520 ˚C в течение 120 мину………………… 55
3.6.2. Морфология поверхности образцов, изготовленных из
закаленной стали 40Х после азотирование в безводородной
плазме низковольтного газового дугового разряда при токе
I=60А и температуре 400 ˚C в течение 120 минут……………… 58
3.6.3. Морфология поверхности образцов, изготовленных из
закаленной стали 40Х после азотирование в безводородной
плазме низковольтного газового дугового разряда при токе
I=30А и температуре 300 ˚C в течение 120 минут……………… 60
3.6.4. Морфология поверхности образцов, изготовленных из
закаленной стали 40Х после азотирование в безводородной
плазме низковольтного газового дугового разряда при токе
I=10А и температуре 200 ˚C в течение 120 минут……………… 63
3.7. Физико-механические характеристики экспериментальных
образцов после азотирование в безводородной плазме
низковольтного газового дугового разряда……………………… 66
Вывод к главе 3…………………………….……………………………. 71
ГЛАВА 4. ФИНАНСОВЫЙ МЕНЕДЖМЕНТ,
РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ……… 72
4.1. Предпроектный анализ…………………………………………… 72
4.1.1. Потенциальные потребители результатов исследования………. 72
4.1.2. Анализ конкурентных технических решений с позиции
ресурсоэффективности и ресурсосбережения…………………… 74
4.2. SWOT-анализ……………………………………………………… 75
4.3. Инициация проекта…………………………………………….…. 78
4.3.1. Организационная структура проекта……………………………. 79
4.4. Ограничения и допущения проекта……………………………… 80
4.4.1. Бюджет научного проекта………………………………………… 81
4.4.2. План проекта………………………………………………………. 83
4.4.3. Отчисления на социальные нужды………………………………. 84
4.4.4. Затраты на электроэнергию………………………………………. 84
4.4.5. Затраты на водоснабжение……………………………………….. 85
4.4.6. Затраты на водоотведение………………………………………… 85
4.4.7. Полная смета затрат на выполнение НИР………………………. 85
4.4.8. Оценка сравнительной эффективности исследования.………… 86
ГЛАВА 5. СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ ………………… 88
5.1. Производственная безопасность………………………………… 88
5.1.1. Анализ производственных факторов, возникающих при
проведении исследований………………………………………… 89
5.1.2. Микроклимат………………………………………………………… 89
5.1.3. Вредные вещества………………………………………………… 91
5.1.4. Производственный шум………………………………………….. 91
5.1.5. Освещенность……………………………………………………… 93
5.1.6. Факторы электрической природы………………………………… 95
5.1.7. Электробезопасность……………………………………………… 97
5.2. Экологическая безопасность……………………………………… 98
5.2.1. Региональная безопасность………………………………………. 98
5.2.2. Защита атмосферы………………………………………………… 99
5.3. Безопасность в чрезвычайных ситуациях……………………….. 100
5.3.1. Факторы пожарной и взрывной природы……………………….. 100
5.4. Организационные мероприятия обеспечения безопасности……. 104
5.4.1. Организационные защитные мероприятия……………………… 105
ЗАКЛЮЧЕНИЕ……………………………………………………………………………….. 108
СПИСОК ПУБЛИКАЦИЙ СТУДЕНТА………………………………. 109
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ…………………….. 110
ПРИЛОЖЕНИЯ А………………………………………………………… 114

Большое количество деталей и механизмов машин работают в
различных средах, что приводят детали и механизмы к коррозии, которая
начинается с поверхности. Поэтому для повышения надежности и
долговечности различных деталей и механизмов в агрессивных средах,
нужно упрочнять в большинстве случаев лишь поверхностные слои.

Из множеств количеств методов упрочнения поверхностного слоя
широко используется метод химико-термической обработки (ХТО). В
настоящее время накоплен большой опыт по применению различных
методов химико-термической обработки (ХТО) материалов, когда
поверхностные слои металлов подвергают диффузионному насыщению
элементами внедрения, в результате которого на поверхности изделия
образуется новый, отличающийся от сердцевины слой[5].

В данной впускной квалификационной работе представлены результаты
изучение, влияние интенсивности ионной бомбардировки на формирование
азотированных слоев безводородной плазме газового дугового разряда. В
ходе выполнение работ были изучены процессы ионно-плазменного
азотирование, при различной интенсивности тока разряда диапазоне от 10 до
90A. Было изучено что, как изменялось морфология поверхности, структура
при разных температурах нагрева и физико-механические характеристики
таких как, твердости поверхности и глубина азотированного слоя. Исходя из
этого можно сделать следующие выводы:

1. Показано, что ток разряда влияет на величину температуры
обрабатываемых изделий при одном и том же значении напряжения
смещения.
2. При меньшем токе у нас получилось максимальная твердость
сердцевине и минимальная глубина азотированного слоя
3. Установлено, что интенсивность воздействия ионной бомбардировки
с ростом тока разряда приводит к изменению шероховатости поверхности и к
более высокому значению глубины азотированного слоя.
4. Обнаружено, что при 200 ˚C азотирования закалочная структура и
твердость сохраняются.
5. На величину твердости поверхности существенное влияние оказывает
состав легирующих элементов в сталях.

6. Делая обобщающая заключения по работе можно сказать, что плазма
несамостоятельного дугового разряда, позволяет широких пределах
управляет свойствами, в том числе, физико-механическими и
трибологическами свойствами поверхности.
ПУБЛИКАЦИИ:
Часть материалов исследовательской работы была представлена в
соавторстве на IX Международная научно-практическая конференция
«Инновационные технологии в машиностроении», проходившей в ЮТИ ТПУ
(г. Юрга) с 24 по 26 мая 2018г.
Махмудалиев А.Р., Каримов А.К., Гончаренко И.М. Влияние состава
газовой среды на параметры упрочнения стали при азотировании в тлеющем
разряде . С. 74-77.-
Инновационные технологии в машиностроении : сборник трудов IX
Международной научно-практической конференции / Юргинский
технологический институт. – Томск: Изд-во Томского политехнического
университета, 2018. − 295 с

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Александра С.
    5 (91 отзыв)
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повы... Читать все
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повышении уникальности текста и оформлении библиографических ссылок по ГОСТу.
    #Кандидатские #Магистерские
    132 Выполненных работы
    Екатерина С. кандидат наук, доцент
    4.6 (522 отзыва)
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    #Кандидатские #Магистерские
    1077 Выполненных работ
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы
    Дмитрий М. БГАТУ 2001, электрификации, выпускник
    4.8 (17 отзывов)
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал стать... Читать все
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал статьи, патенты, кандидатскую диссертацию, преподавал. Занимаюсь этим с 2003.
    #Кандидатские #Магистерские
    19 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Анна Н. Государственный университет управления 2021, Экономика и ...
    0 (13 отзывов)
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уни... Читать все
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уникальности с нуля. Все работы оформляю в соответствии с ГОСТ.
    #Кандидатские #Магистерские
    0 Выполненных работ

    Другие учебные работы по предмету

    Решение технологических проблем при обработке литого корпуса
    📅 2021год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Повышение работоспособности торцовых фрез с механическим креплением режущих пластин
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка технологии изготовления деталей насос-дозатора с применением операции дорнования
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка технологии автоматической сварки под слоем флюса тавровых балок на установке Corimpex
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка алгоритмов управления дугой горящей в динамическом режиме
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Электронно-лучевая сварка термоизолированной трубы
    📅 2021год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)