Влияние ионной бомбардировки на формирование поверхностных слоев при азотировании в безводородной плазме газового разряда

Махмудалиев, Абдубанноб Рахмонали угли Отделение материаловедения (ОМ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В работе приведены результаты изучения процессов упрочнения стальных образцов в безводородной плазме низковольтного газового разряда в вакууме. В отличие от тлеющего разряда, широко применяемого в промышленных технологиях для проведения ионно-плазменного азотирования, в данном типе газового разряда из-за низкого давления заметно выражены эффекты распыления поверхности обрабатываемых деталей. Данное обстоятельство однозначно должно приводить к интенсификации диффузионных процессов. В работе описаны параметры оборудования, приводятся экспериментальные данные по измерениям шероховатости, микротвердости и структуре поверхностей легированных сталей. Отдельное внимание уделено вопросу азотирования закаленных сталей в данном типе разряда в диапазоне температур отпуска.

Стр.
ВВЕДЕНИЕ……………………………………………………………… 11
ГЛАВА 1. ПРИМЕНЕНИЕ АЗОТИРОВАНИЯ ДЛЯ
УПРОЧНЕНИЯ СТАЛЕЙ …………………………………………….. 13
1.1 Основные технические способы упрочнения стальных
деталей…………………………………………………………… 13
1.1.1. Термообработка металлов……………………………………… 14
1.1.2. Химико-термическая обработка……………………………….. 15
1.1.3. Вакуумные ионно – плазменные методы обработки
материалов……………………………………………………….. 16
1.2. Основные виды и технологии азотирования сталей………… 18
1.2.1. Азотирование сталей……………………………………………. 19
1.2.2. Основные виды азотирования…………………………………. 22
1.3. Азотирование в газовых электрических разрядах …….……….. 25
1.4. Свойства азотированных материалов и изделий…………….. 26
1.5. Постановка задач исследования……………………………….. 30
ГЛАВА 2. ОБОРУДОВАНИЕ ДЛЯ АЗОТИРОВАНИЯ СТАЛЕЙ,
МАТЕРИАЛЫ И МЕТОДИКИ ИССЛЕДОВАНИЯ.………………… 31
2.1. Оборудование для азотирования сталей в дуговом
разряде…………………………………………………………… 31
2.2. Материалы для исследования………………………………….. 33
2.3. Методика измерения микротвердости…………………………… 35
2.4. Определение шероховатости поверхности…………………… 36
2.5. Метод оптической металлографии……………………………… 39
2.6. Описание процесса подготовки образцов для
экспериментов…………………………………………………… 40
2.7. Физико-механические параметры исходных образцов………… 43
ГЛАВА 3. ВЛИЯНИЕ ОСОБЕННОСТЕЙ РЕЖИМОВ НА
ФОРМИРОВАНИЕ МОРФОЛОГИИ ПОВЕРХНОСТИ И
ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК
ЭКСПЕРИМЕНТАЛЬНЫХ ОБРАЗЦОВ …………………………… 46
3.1. Азотирование экспериментальных образцов в безводородной
плазме низковольтного газового дугового разряда …………… 46
3.2. Особенности упрочнения сталей в безводородной плазме
низковольтного газового разряда при токе I=90А …………… 49
3.3. Особенности упрочнения сталей в безводородной плазме
низковольтного газового разряда при токе I=60А……………….. 50
3.4. Особенности упрочнения сталей в безводородной плазме
низковольтного газового разряда при токе I=30А.…………….. 52
3.5. Особенности упрочнения сталей в безводородной плазме
низковольтного газового разряда при токе I=10А.…………….. 53
3.6. Исследований морфологии поверхности азотированного слоя
закаленной стали 40Х полученных при разных режимах
азотирования……………………………………………………… 55
3.6.1. Морфология поверхности образцов, изготовленных из
закаленной стали 40Х после азотирование в безводородной
плазме низковольтного газового дугового разряда при токе
I=90А и температуре 520 ˚C в течение 120 мину………………… 55
3.6.2. Морфология поверхности образцов, изготовленных из
закаленной стали 40Х после азотирование в безводородной
плазме низковольтного газового дугового разряда при токе
I=60А и температуре 400 ˚C в течение 120 минут……………… 58
3.6.3. Морфология поверхности образцов, изготовленных из
закаленной стали 40Х после азотирование в безводородной
плазме низковольтного газового дугового разряда при токе
I=30А и температуре 300 ˚C в течение 120 минут……………… 60
3.6.4. Морфология поверхности образцов, изготовленных из
закаленной стали 40Х после азотирование в безводородной
плазме низковольтного газового дугового разряда при токе
I=10А и температуре 200 ˚C в течение 120 минут……………… 63
3.7. Физико-механические характеристики экспериментальных
образцов после азотирование в безводородной плазме
низковольтного газового дугового разряда……………………… 66
Вывод к главе 3…………………………….……………………………. 71
ГЛАВА 4. ФИНАНСОВЫЙ МЕНЕДЖМЕНТ,
РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ……… 72
4.1. Предпроектный анализ…………………………………………… 72
4.1.1. Потенциальные потребители результатов исследования………. 72
4.1.2. Анализ конкурентных технических решений с позиции
ресурсоэффективности и ресурсосбережения…………………… 74
4.2. SWOT-анализ……………………………………………………… 75
4.3. Инициация проекта…………………………………………….…. 78
4.3.1. Организационная структура проекта……………………………. 79
4.4. Ограничения и допущения проекта……………………………… 80
4.4.1. Бюджет научного проекта………………………………………… 81
4.4.2. План проекта………………………………………………………. 83
4.4.3. Отчисления на социальные нужды………………………………. 84
4.4.4. Затраты на электроэнергию………………………………………. 84
4.4.5. Затраты на водоснабжение……………………………………….. 85
4.4.6. Затраты на водоотведение………………………………………… 85
4.4.7. Полная смета затрат на выполнение НИР………………………. 85
4.4.8. Оценка сравнительной эффективности исследования.………… 86
ГЛАВА 5. СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ ………………… 88
5.1. Производственная безопасность………………………………… 88
5.1.1. Анализ производственных факторов, возникающих при
проведении исследований………………………………………… 89
5.1.2. Микроклимат………………………………………………………… 89
5.1.3. Вредные вещества………………………………………………… 91
5.1.4. Производственный шум………………………………………….. 91
5.1.5. Освещенность……………………………………………………… 93
5.1.6. Факторы электрической природы………………………………… 95
5.1.7. Электробезопасность……………………………………………… 97
5.2. Экологическая безопасность……………………………………… 98
5.2.1. Региональная безопасность………………………………………. 98
5.2.2. Защита атмосферы………………………………………………… 99
5.3. Безопасность в чрезвычайных ситуациях……………………….. 100
5.3.1. Факторы пожарной и взрывной природы……………………….. 100
5.4. Организационные мероприятия обеспечения безопасности……. 104
5.4.1. Организационные защитные мероприятия……………………… 105
ЗАКЛЮЧЕНИЕ……………………………………………………………………………….. 108
СПИСОК ПУБЛИКАЦИЙ СТУДЕНТА………………………………. 109
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ…………………….. 110
ПРИЛОЖЕНИЯ А………………………………………………………… 114

Большое количество деталей и механизмов машин работают в
различных средах, что приводят детали и механизмы к коррозии, которая
начинается с поверхности. Поэтому для повышения надежности и
долговечности различных деталей и механизмов в агрессивных средах,
нужно упрочнять в большинстве случаев лишь поверхностные слои.

Из множеств количеств методов упрочнения поверхностного слоя
широко используется метод химико-термической обработки (ХТО). В
настоящее время накоплен большой опыт по применению различных
методов химико-термической обработки (ХТО) материалов, когда
поверхностные слои металлов подвергают диффузионному насыщению
элементами внедрения, в результате которого на поверхности изделия
образуется новый, отличающийся от сердцевины слой[5].

В данной впускной квалификационной работе представлены результаты
изучение, влияние интенсивности ионной бомбардировки на формирование
азотированных слоев безводородной плазме газового дугового разряда. В
ходе выполнение работ были изучены процессы ионно-плазменного
азотирование, при различной интенсивности тока разряда диапазоне от 10 до
90A. Было изучено что, как изменялось морфология поверхности, структура
при разных температурах нагрева и физико-механические характеристики
таких как, твердости поверхности и глубина азотированного слоя. Исходя из
этого можно сделать следующие выводы:

1. Показано, что ток разряда влияет на величину температуры
обрабатываемых изделий при одном и том же значении напряжения
смещения.
2. При меньшем токе у нас получилось максимальная твердость
сердцевине и минимальная глубина азотированного слоя
3. Установлено, что интенсивность воздействия ионной бомбардировки
с ростом тока разряда приводит к изменению шероховатости поверхности и к
более высокому значению глубины азотированного слоя.
4. Обнаружено, что при 200 ˚C азотирования закалочная структура и
твердость сохраняются.
5. На величину твердости поверхности существенное влияние оказывает
состав легирующих элементов в сталях.

6. Делая обобщающая заключения по работе можно сказать, что плазма
несамостоятельного дугового разряда, позволяет широких пределах
управляет свойствами, в том числе, физико-механическими и
трибологическами свойствами поверхности.
ПУБЛИКАЦИИ:
Часть материалов исследовательской работы была представлена в
соавторстве на IX Международная научно-практическая конференция
«Инновационные технологии в машиностроении», проходившей в ЮТИ ТПУ
(г. Юрга) с 24 по 26 мая 2018г.
Махмудалиев А.Р., Каримов А.К., Гончаренко И.М. Влияние состава
газовой среды на параметры упрочнения стали при азотировании в тлеющем
разряде . С. 74-77.-
Инновационные технологии в машиностроении : сборник трудов IX
Международной научно-практической конференции / Юргинский
технологический институт. – Томск: Изд-во Томского политехнического
университета, 2018. − 295 с

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Анна Н. Государственный университет управления 2021, Экономика и ...
    0 (13 отзывов)
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уни... Читать все
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уникальности с нуля. Все работы оформляю в соответствии с ГОСТ.
    #Кандидатские #Магистерские
    0 Выполненных работ
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ

    Другие учебные работы по предмету

    Решение технологических проблем при обработке литого корпуса
    📅 2021год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Повышение работоспособности торцовых фрез с механическим креплением режущих пластин
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка технологии изготовления деталей насос-дозатора с применением операции дорнования
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка технологии автоматической сварки под слоем флюса тавровых балок на установке Corimpex
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка алгоритмов управления дугой горящей в динамическом режиме
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Электронно-лучевая сварка термоизолированной трубы
    📅 2021год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)