Методы и алгоритмы настройки проекционной оценки плотности вероятности случайного вектора в условиях малых выборок

Браништи, Владислав Владимирович

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Глава 1. Обзор методов оценивания функции плотности вероятности . . . . . . . . 15
§ 1.1. Основные определения и обозначения . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
§ 1.2. Оценки проекционного типа . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
§ 1.3. Ядерные оценки . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
§ 1.4. Другие виды оценок . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Выводы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Глава 2. Оптимизация проекционной оценки плотности вероятности . . . . . . . . 36
§ 2.1. Обоснование применимости проекционной оценки . . . . . . . . . . . . . . . . 36
§ 2.2. Методы настройки коэффициентов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
§ 2.3. Методы настройки длины ряда . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
§ 2.4. Многомерный случай . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Выводы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Глава 3. Применение оценок плотности вероятности . . . . . . . . . . . . . . . . . . . . . . . . . 91
§ 3.1. Оценивание функции регрессии. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
§ 3.2. Классификация . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
§ 3.3. Оценивание количества информации . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Актуальность темы и степень её разработанности. Разработка и
исследование моделей и алгоритмов анализа данных, обнаружения закономер-
ностей в данных в условиях неопределённости практически всегда предполагает
оценивание функции распределения либо плотности вероятности соответству-
ющих величин. В частности, задача оценивания плотности вероятности случай-
ного вектора возникает при разработке методов распознавания образов, филь-
трации, распознавания и синтеза изображений [61, 65].
Имеющиеся в настоящее время методы оценивания функции плотности
вероятности можно разделить на параметрические и непараметрические. Па-
раметрические методы используются в случае, когда известна структура зако-
на распределения с точностью до параметров, и задача сводится к построению
статистических оценок этих параметров, удовлетворяющих заданным условиям
(состоятельность, несмещённость и др.). К числу наиболее разработанных па-
раметрических методов относятся метод моментов, метод максимального прав-
доподобия, метод минимума 2 [46, 86]. Однако часто в практических задачах
возникают ситуации, когда структура закона распределения неизвестна, т.е. си-
туации непараметрической неопределённости [131]. При этом априорная ин-
формация о функции плотности вероятности ( ) носит более общий характер,
например, ( ) может предполагаться непрерывной на данном отрезке, имею-
щей -ю производную, имеющей суммируемый квадрат и т.п. Использование
параметрических методов при фактическом несовпадении структуры закона
распределения приводит к неудовлетворительным результатам. В этом случае
используются методы, получившие название непараметрических.
Исторически первой непараметрической оценкой функции плотности ве-
роятности является гистограмма, исследованная К. Пирсоном в 1895 г. Во вто-
рой половине 20-го века интерес к непараметрическим методам значительно
возрос, о чём свидетельствует ряд работ, посвящённых следующим оценкам:
полиграмма [131], оценка ближайших соседей [124], оценка Розенблатта – Пар-
зена [25, 20], проекционная оценка [144].
При использовании непараметрических методов представляет интерес ис-
следование сходимости получаемых оценок к истинной функции плотности ве-
роятности по заданной метрике, а также оценка скорости сходимости. В связи
с этим возникает задача оптимальной настройки оценок функции плотности
вероятности. Так, одной из первых формул для расчёта числа интервалов груп-
пирования одинаковой длины при построении гистограммы является формула
Стэрджеса [31]. В случае использования полиграммы или оценки ближай-
ших соседей подлежит настройке численный параметр, определяющий степень
сглаженности полученной оценки.
При использовании проекционной оценки плотности вероятности случай-
ного вектора x = ( 1 , . . . , ):

∑︁
^(x) = (x)
=0

В ходе выполнения диссертационной работы были получены следующие
результаты:
– показано, что весовое гильбертово пространство 2, (Ω) может быть
использовано для построения проекционной оценки любой функции плотности
вероятности (предл. 2.4);
– найден критерий на весовую функцию (x) для расширения простран-
ства 2 (Ω) до пространства 2, (Ω), которое содержит более широкое множе-
ство функций плотности вероятности (теорема 2.4);
– предложен способ построения весовой функции (x), при котором со-
ответствующее расширение 2, (Ω) пространства 2, содержит оцениваемую
функцию плотности вероятности (x) (формула (2.9));
– предложен новый метод настройки коэффициентов проекционной оцен-
ки функции плотности вероятности случайного вектора, являющийся обобще-
нием метода моментов (формула (2.13));
– доказано, что при определённых условиях частным случаем предло-
женного обобщения является традиционный метод оценивания коэффициентов
(теорема 2.5);
– предложен новый метод оценивания длины ряда проекционной оценки, в
которой коэффициенты настраиваются методом моментов или его обобщением
(формула (2.25));
– экспериментально установлено, что на малых выборках обобщение ме-
тода моментов позволяет повысить эффективность проекционной оценки (табл.
2.5, 2.8);
– экспериментально установлено, что для прикладных задач (восстановле-
ние функции регрессии, классификация, оценка количества информации) более
предпочтительной является оценка Розенблатта – Парзена.
Также было экспериментально установлено, что условиях малых выбо-
рок метод моментов является более предпочтительным при настройке проек-
ционной оценки. В тех случаях, когда нет возможности использовать ядерные
оценки (например, ограниченные вычислительные ресурсы), целесообразно ис-
пользовать проекционную оценку, так как она не содержит всю исследуемую
выборку и допускает лаконичное математическое выражение. При этом для
настройки длины ряда рекомендуется использовать предложенный подход.
Используемый метод сравнения алгоритмов восстановления плотности ве-
роятности и полученные численные результаты могут быть также использова-
ны при сравнении эффективности любых непараметрических оценок функции
плотности вероятности.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Екатерина С. кандидат наук, доцент
    4.6 (522 отзыва)
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    #Кандидатские #Магистерские
    1077 Выполненных работ
    AleksandrAvdiev Южный федеральный университет, 2010, преподаватель, канд...
    4.1 (20 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    28 Выполненных работ
    user1250010 Омский государственный университет, 2010, преподаватель,...
    4 (15 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    21 Выполненная работа
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ

    Другие учебные работы по предмету

    Расширенное суперпиксельное представление изображений для их обработки и анализа
    📅 2022год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»
    Метод восстановления динамических изображений на основе оптимальной интерполяции
    📅 2022год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»
    Метод конверсационного анализа неструктурированных текстов социальных сетей
    📅 2021год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»