Модифицированный метод логического анализа данных для задач классификации

Кузьмич, Роман Иванович

ВВЕДЕНИЕ ………………………………………………………………………………………………. 4

1 АНАЛИЗ ЛОГИЧЕСКИХ АЛГОРИТМОВ КЛАССИФИКАЦИИ ……………… 10

1.1 Основные понятия логических алгоритмов классификации ………………. 10

1.2 Алгоритмы поиска закономерностей в форме конъюнкций ……………….. 13

1.3 Анализ основных логических алгоритмов классификации и способов их
построения ………………………………………………………………………………………….. 18

1.3.1 Решающие списки …………………………………………………………………… 18
1.3.2 Решающие деревья ………………………………………………………………….. 21
1.3.3 Алгоритмы простого и взвешенного голосования правил …………… 28
1.4 Анализ программных систем для решения задач классификации ………. 35

Выводы ………………………………………………………………………………………………. 42

2 МЕТОД ЛОГИЧЕСКОГО АНАЛИЗА ДАННЫХ И ЕГО МОДИФИКАЦИИ 44

2.1 Описание подхода ………………………………………………………………………….. 44

2.2 Бинаризация признаков …………………………………………………………………… 45

2.3 Построение опорного множества …………………………………………………….. 48

2.4 Формирование закономерностей ……………………………………………………… 51

2.5 Построение классификатора ……………………………………………………………. 55

2.6 Модификации для метода логического анализа данных ……………………. 57

2.7 Решение задач псевдобулевой оптимизации …………………………………….. 64

Выводы ………………………………………………………………………………………………. 68

3 ПРОГРАММНАЯ РЕАЛИЗАЦИЯ И ЭКСПЕРИМЕНТАЛЬНЫЕ
ИССЛЕДОВАНИЯ НА ПРАКТИЧЕСКИХ ЗАДАЧАХ ……………………………….. 71

3.1 Программная реализация метода логического анализа данных и
особенности использования программной системы ……………………………….. 71
3.2 Результаты экспериментальных исследований метода логического
анализа данных и разработанных для него модификаций на практических
задачах классификации ………………………………………………………………………… 77

3.3 Настройка параметров метода логического анализа данных с учетом
специфики решаемых задач ………………………………………………………………….. 93

3.4 Сравнительный анализ метода логического анализа данных с другими
алгоритмами классификации на практических задачах …………………………… 96

Выводы …………………………………………………………………………………………….. 105

ЗАКЛЮЧЕНИЕ ……………………………………………………………………………………… 107

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ ……………………………………. 109

ПРИЛОЖЕНИЕ А (Справочное) Названия полей базы данных и расшифровка
их значений ……………………………………………………………………………………………. 122

ПРИЛОЖЕНИЕ Б (Справочное) Признаки с нулевой и максимальной
важностью для задачи прогнозирования осложнений инфаркта миокарда ….. 130

В настоящее время при решении задач распознавания образов, помимо
требования высокой точности, часто возникает необходимость в
интерпретируемости и обоснованности получаемых решений. Особенно
интерпретируемость и обоснованность являются ключевыми факторами при
решении тех практических задач, в которых потери от принятия неверного
решения могут быть велики. Поэтому система поддержки принятия решений,
используемая для таких задач, должна обосновывать возможные решения и
интерпретировать результат.
Для создания такой системы потребуются алгоритмы классификации
данных, которые помимо самого решения предоставляют в явном виде
решающее правило, то есть выявляют знания из имеющихся данных. Это
справедливо для логических алгоритмов классификации, принцип работы
которых состоит в выявлении закономерностей в данных и формализации их в
виде набора правил, т.е. набора закономерностей, описываемых простой
логической формулой.
Процесс формирования логических правил сопровождается решением
задач выбора наилучших альтернатив в соответствии с некоторым критерием. В
предлагаемом методе логического анализа данных формализация процесса
формирования логических правил осуществляется в виде ряда задач
комбинаторной оптимизации, что формирует гибкий и эффективный алгоритм
логического анализа для классификации данных. Объединив некоторое
количество закономерностей в композицию, получаем классификатор, который
решает поставленную задачу.
Однако в настоящее время существует ряд проблем, связанных с
применением метода логического анализа данных при решении практических
задач классификации. Одной из них является построение оптимизационных
моделей для формирования информативных закономерностей. При
рассмотрении данного вопроса, прежде всего, необходимо определиться с теми
критериями и ограничениями, которые лежат в основе этих оптимизационных
моделей. Другой проблемой исследуемого метода является построение
классификатора, который смог бы верно отнести новое наблюдение, т.е.
наблюдение, не принимавшее участие при его построении, к тому или иному
классу. Основной задачей на данном этапе метода является повышение
интерпретируемости классификатора и качества классификации новых
наблюдений, т. е. улучшение обобщающих способностей классификатора.
Таким образом, разработка модификаций для метода логического
анализа данных, позволяющих улучшить интерпретируемость и обобщающие
способности классификатора, является актуальной научно-технической
задачей.
Следует отметить, что большой вклад в развитие логических алгоритмов
классификации внесли следующие ученые: Ю. И. Журавлев, К. В. Рудаков, К.
В. Воронцов, Н. Г. Загоруйко, Г. С. Лбов, Е. В. Дюкова, О. В. Сенько,
В. И. Донской, P. L. Hammer, G. Alexe, S. Alexe, Y. Freund, R. E. Schapire.
Цель диссертационной работы состоит в повышении точности решения
задач классификации и улучшении интерпретируемости классификатора,
основанного на логических закономерностях.
Поставленная цель определила необходимость решения следующих
задач:
1. Провести анализ существующих логических алгоритмов
классификации, алгоритмов поиска информативных закономерностей для них,
и основных программных систем, решающих практические задачи
классификации.
2. Разработать алгоритмическую процедуру выбора базовых наблюдений
для формирования закономерностей в методе логического анализа данных.
3. Разработать алгоритмическую процедуру улучшения закономерностей
для повышения их информативности и усиления обобщающих способностей
классификатора, построенного на базе данных закономерностей.
4. Создать модель оптимизации для формирования закономерностей,
покрывающих существенно различные подмножества наблюдений обучающей
выборки в методе логического анализа данных.
5. Разработать алгоритмическую процедуру построения классификатора,
учитывающую информативность закономерностей, для метода логического
анализа данных.
6. Модифицировать метод логического анализа данных на основе
разработанных алгоритмических процедур.
7. Алгоритмизировать и реализовать метод логического анализа данных
в виде программной системы, провести его апробацию и сравнительный анализ
по точности с другими алгоритмами классификации на практических задачах.
Методы исследования. В диссертационной работе использовались
методы системного анализа, теория множеств, теория вероятностей,
комбинаторика, методы оптимизации.
Новые научные результаты, выносимые на защиту:
1. Разработана алгоритмическая процедура выбора базовых наблюдений
для формирования закономерностей, отличающаяся от известных
целенаправленным выбором базовых наблюдений, получаемых путем
применения алгоритма «k-средних» к множеству наблюдений обучающей
выборки, позволяющая сократить количество правил в классификаторе и
снизить трудоемкость его построения при сохранении высокой точности.
2. Разработана алгоритмическая процедура наращивания
закономерностей, полученных на базе оптимизационной модели с
максимальным покрытием наблюдений обучающейся выборки, позволяющая
повысить информативность правил, тем самым, способствуя увеличению
точности принимаемых классификатором решений.
3. Создана модель оптимизации для формирования закономерностей,
отличающаяся от известных наличием в целевой функции весового
коэффициента покрываемого наблюдения, а также возможностью захвата
наблюдений другого класса, позволяющая формировать правила, которые
выделяют существенно различные подмножества наблюдений обучающей
выборки.
4. Разработана алгоритмическая процедура построения классификатора
как композиции информативных закономерностей, отличающаяся от известных
совместным использованием критерия бустинга для оценки информативности
закономерностей и новой итеративной процедуры выбора порога
информативности, позволяющая сократить количество правил в
классификаторе при сохранении высокой точности.
5. Модифицирован метод логического анализа данных на основе
разработанных алгоритмических процедур, позволяющих повысить
интерпретируемость классификатора, сокращая количество правил в нем, и
сохранить при этом высокую точность при решении практических задач
классификации.
Теоретическая значимость результатов диссертационного исследования
состоит в разработке и исследовании модификаций для метода логического
анализа данных, основанных на создании оптимизационных моделей для
формирования информативных закономерностей и алгоритмических процедур
сокращения количества правил в классификаторе, что является существенным
вкладом в теорию интеллектуальных технологий и представления знаний,
практики их применения в системах обработки информации и
интеллектуального анализа данных.
Практическая значимость. На основе метода логического анализа
данных реализована программная система поддержки принятия решений,
которая позволяет, используя рекомендации по настройке ее параметров,
широкому кругу специалистов эффективно решать практические задачи
классификации.
Материалы диссертационного исследования и разработанная
программная система использованы для решения следующих практических
задач: классификация результатов радарного сканирования, выявление спама,
прогнозирование осложнений инфаркта миокарда.
Достоверность и обоснованность результатов диссертации
подтверждается: исследованием существующих логических алгоритмов
классификации и алгоритмов поиска информативных закономерностей для них,
корректным обоснованием постановок задач, результатами применения
предложенных моделей, методов и алгоритмических процедур, сравнительным
анализом по точности с существующими алгоритмами классификации на
практических задачах.
Реализация результатов работы. Диссертационная работа поддержана
Фондом содействия развития малых форм предприятий в научно-технической
сфере по программе «У.М.Н.И.К.» («Участник молодежного научно-
инновационного конкурса») в рамках НИОКР «Разработка программной
системы на базе логических алгоритмов классификации для решения задач
медицинской диагностики и прогнозирования» на 2011-2013 гг. Результаты
диссертации использовались в гранте Президента РФ МК-463.2010.9
«Комбинаторная оптимизация в задачах распознавания при диагностике и
прогнозировании». Разработанная программная система «Логические анализ
данных в задачах классификации» зарегистрирована в Реестре программ для
ЭВМ 17 марта 2011 г. (свидетельство № 2011612265).
Апробация работы. Основные положения и результаты диссертации
докладывались и обсуждались на XIV, XV Международной научной

В ходе выполнения диссертационной работы получены следующие
результаты:
1. Проведен анализ существующих логических алгоритмов
классификации, алгоритмов поиска информативных закономерностей для них,
и основных программных систем, решающих практические задачи
классификации. Отмечено, что для классификации наиболее приемлем
алгоритм, основанный на голосовании правил.
2. Разработана алгоритмическая процедура выбора базовых наблюдений
для формирования закономерностей, отличающаяся от известных
целенаправленным выбором базовых наблюдений, получаемых путем
применения алгоритма «k-средних» к множеству наблюдений обучающей
выборки.
3. Разработана алгоритмическая процедура наращивания
закономерностей, полученных на базе оптимизационной модели с
максимальным покрытием наблюдений обучающей выборки.
4. Создана модель оптимизации для формирования закономерностей,
отличающаяся от известных наличием в целевой функции весового
коэффициента покрываемого наблюдения, а также возможностью захвата
наблюдений другого класса.
5. Разработана алгоритмическая процедура построения классификатора
как композиции информативных закономерностей, отличающаяся от известных
совместным использованием критерия бустинга для оценки информативности
закономерностей и новой итеративной процедуры выбора порога
информативности.
6. Модифицирован метод логического анализа данных на основе
разработанных алгоритмических процедур, при использовании которых
повышается интерпретируемость классификатора и качество классификации
новых наблюдений, т. е. улучшаются обобщающие способности
классификатора.
7. В результате решения практических задач эмпирически проверена
пригодность оптимизационных моделей для формирования информативных
закономерностей и эффективность разработанных алгоритмических процедур
для метода логического анализа данных.
8. Проведено сравнение по точности метода логического анализа данных
с другими алгоритмами классификации на практических задачах. В результате
метод показал лучшие результаты по точности решения предложенных задач.
Таким образом, в диссертационной работе разработаны, исследованы и
проверены на практических задачах модификации для метода логического
анализа данных, основанные на создании оптимизационных моделей для
формирования информативных закономерностей и алгоритмических процедур
сокращения количества правил в классификаторе при сохранении высокой
точности, что является вкладом в теорию и практику интеллектуального
анализа данных.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Александр Р. ВоГТУ 2003, Экономический, преподаватель, кандидат наук
    4.5 (80 отзывов)
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфин... Читать все
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфинансы (Казначейство). Работаю в финансовой сфере более 10 лет. Банки,риски
    #Кандидатские #Магистерские
    123 Выполненных работы
    Анна С. СФ ПГУ им. М.В. Ломоносова 2004, филологический, преподав...
    4.8 (9 отзывов)
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания... Читать все
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания и проверки (в качестве преподавателя) контрольных и курсовых работ.
    #Кандидатские #Магистерские
    16 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ

    Последние выполненные заказы

    Другие учебные работы по предмету