Top.Mail.Ru

Эффективные алгоритмы анализа джевонс-эквивалентности данных

Кукарцев, Анатолий Михайлович

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Глава 1. Представление группы Джевонса . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
§ 1.1. Основные обозначения, объекты и операции. . . . . . . . . . . . . . . . . . . . . .15
§ 1.2. Действие группы подстановок на множестве БВ . . . . . . . . . . . . . . . . . 18
§ 1.3. Контрольные примеры действия подстановок над БВ . . . . . . . . . . . . 21
§ 1.4. Выбор представления группы Джевонса . . . . . . . . . . . . . . . . . . . . . . . . . . 25
§ 1.5. Контрольные примеры операций в группе Джевонса . . . . . . . . . . . . . 34
§ 1.6. Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Глава 2. Действие группы Джевонса на множествах . . . . . . . . . . . . . . . . . . . . . . . . . 38
§ 2.1. Действие группы Джевонса на множестве БВ . . . . . . . . . . . . . . . . . . . . 38
§ 2.2. Действие группы Джевонса на множестве БФ . . . . . . . . . . . . . . . . . . . . 42
§ 2.3. Эквиморфизм группы Джевонса и группы βn . . . . . . . . . . . . . . . . . . . . 44
§ 2.4. Частотные свойства БВ и БФ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
§ 2.5. Частотные свойства действия группы Джевонса . . . . . . . . . . . . . . . . . 50
§ 2.6. Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Глава 3. Исследование джевонс-эквивалентности данных . . . . . . . . . . . . . . . . . . . . 55
§ 3.1. Формальная постановка задачи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
§ 3.2. Каноническое представление элемента группы Джевонса . . . . . . . . 57
§ 3.3. Основной алгоритм решения уравнения . . . . . . . . . . . . . . . . . . . . . . . . . . 61
§ 3.4. Эквиморфный вычислитель. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
§ 3.5. Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Глава 4. Оценки сложности предложенных решений . . . . . . . . . . . . . . . . . . . . . . . . . 78
§ 4.1. Теоретические оценки сложности . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
§ 4.2. Анализ тривиальности подгрупп инерции булевых функций . . . . . 80
§ 4.3. Спектральный анализ булевых функций . . . . . . . . . . . . . . . . . . . . . . . . . 84
§ 4.4. Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Список сокращений и условных обозначений . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Приложение А. Подробная статистика классов БФ . . . . . . . . . . . . . . . . . . . . . . . . . 107
Приложение Б. Каталоги классов БФ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Приложение В. Результаты спектрального анализа . . . . . . . . . . . . . . . . . . . . . . . . . 114
Приложение Г. Результаты вычислительных экспериментов . . . . . . . . . . . . . . . . 117

Актуальность темы и степень её разработанности. Цифровая ин-
формация представляется преимущественно двумя способами: комбинацион-
ным и функциональным. Первый рассматривает её в виде комбинации симво-
лов некоторого алфавита, а второй – в виде множества значений некоторой
дискретной функции. Комбинационные способы представления информации
и соответствующие им алгоритмы её обработки начали развиваться с начала
ХХ века. Эти способы представления обычно связывают с работами К. Шенно-
на [1], Р. В. Хэмминга [2] и многих других исследователей. В конце XX века в
связи с развитием информационных технологий и естественной потребностью
в качественно новых методах обработки информации начали появляться функ-
циональные способы её представления. Одним из примеров обработки инфор-
мации в таком представлении является серия алгоритмов сжатия графических
данных JPEG [3]. Цифровая информация отображается на некоторую функцию
двух аргументов. Далее функция преобразуется и определяющие её парамет-
ры (коэффициенты Фурье) округляются, кодируются, и их коды сжимаются
комбинационными методами. Такой способ сжатия, как правило, приводит к
потерям информации во время преобразования.
Для функционального представления цифровой двоичной информации
естественно подходят булевы функции (далее – БФ) [4]. Любому бинарному
вектору (далее – БВ), состоящему из нулей и/или единиц, можно инъектив-
но поставить в соответствие БВ длины, кратной степени двойки. Последнему
можно взаимно однозначно поставить некоторую БФ. Для этого важно одно-
значно упорядочить область определения БФ. Это можно выполнить, зафик-
сировав порядок её аргументов, и в соответствии с ним упорядочить область
её определения, например, лексикографически. Сама БФ может быть описана
реализующими её функциональными элементами или формулой [5]. Множе-
ства отрицаний и перестановок аргументов БФ образуют группу Джевонса [6]
и определяют действие над БФ. Указанное действие замечательно тем, что оно
нейтрально, т.к. не затрагивает связей между функциональными элементами
и не меняет формулы. Джевонс-эквивалентные БФ будут иметь одинаковые
КНФ и ДНФ [7]. Такое действие задаёт естественную эквивалентность БФ и,
как следствие, джевонс-эквивалентность соответственных им данным.
Группа Джевонса была определена в конце XIX века С. Джевонсом для
описания действия над системой связанных понятий, представленных в виде
БФ [6]. Более формальное представление этой группы и другое её название
(гипероктаэдральная группа) были предложены А. Янгом [8] в 1930 г. Работы,
связанные с группой Джевонса и её приложениями, ведутся с начала XX века, –
как за рубежом, так и в России. К ним можно отнести, прежде всего, работы о
представлении группы и изучении её свойств исследователей Л. Гейссингера и
Д. Кинча [9], М. Баака [10], В. Н. Иванова [11], С. Билли и Т. К. Ламма [12],
М. Парвафи, Б. Сивакумара и А. Тамилселви [13], Б. Бьянок [14], Дж. Кон-
да [15], Б. В. Олийныка и В. И. Сущанского [16, 17] и др.; труды, связанные с
теорией перечислений исследователей Д. Слепиана [18], П. Константинески [19],
Н. Дж. Де Брёйна [20] и др.; практические работы, связанные с кодированием
и обработкой информации исследователей О. В. Денисова [21], Д. Г. Видеман-
на [22] и др.; теоретические и прикладные работы в области криптографии и
криптологии исследователей А. В. Тарасова [23], В. Г. Никонова и А. В. Саран-
цева [24], М. Л. Бурякова и О. А. Логачева [25], Б. А. Погорелова и М. А. Пу-
довкиной [26, 27], С. П. Горшкова [28], Е. К. Алексеева и Е. К. Карелиной [29]
и др.; труды в области генетики исследователей С. Ханненнфлли и П. А. Пе-
взнера [30] и др.; работы в области кристаллографии исследователей Э. Заппа,
Э. Дюкмана, и Р. Тварока [31]. К известным нерешенным проблемам, связан-
ным с группой Джевонса, относится также Burnt Pancake problem о сортировке
префикс-реверсалами, сформулированная Б. Гейтсом и К. Пападимитроу [32].
Перечислим некоторые важные проблемы в этой предметной области:
– анализ джевонс-эквивалентности данных;
– поиск элементов группы, связывающих джевонс-эквивалентные данные.
Поэтому необходимы эффективные алгоритмы, т.е. такие, которые могут
находить решение указанных проблем за разумное время. Как известно, по-
рядок группы Джевонса для БФ n переменных равен 2n · n!. Исходя из этого,
оценим возможность применения тривиальных алгоритмов, перечисляющих все
элементы группы. Время проверки одного элемента составляет τ(n) = 10−9 · 2n ,
где 2n – число значений БФ и 10−9 с – примерное время вычисления одно-
го значения на ЭВМ (1 ГГц). Тогда полное время работы алгоритма составит
T ime(n) = τ(n) · dtrivial = τ(n) · 2n · n!, где dtrivial – число действий над БФ три-
виальным алгоритмом (порядок группы). В табл. 1 приведены оценки времени
работы тривиальных алгоритмов.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Антон П. преподаватель, доцент
    4.8 (1033 отзыва)
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публик... Читать все
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публикуюсь, имею высокий индекс цитирования. Спикер.
    #Кандидатские #Магистерские
    1386 Выполненных работ
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Александр Р. ВоГТУ 2003, Экономический, преподаватель, кандидат наук
    4.5 (80 отзывов)
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфин... Читать все
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфинансы (Казначейство). Работаю в финансовой сфере более 10 лет. Банки,риски
    #Кандидатские #Магистерские
    123 Выполненных работы
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Татьяна П.
    4.2 (6 отзывов)
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки ... Читать все
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки в одном из крупнейших университетов Германии.
    #Кандидатские #Магистерские
    9 Выполненных работ

    Другие учебные работы по предмету

    Расширенное суперпиксельное представление изображений для их обработки и анализа
    📅 2022год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»
    Метод восстановления динамических изображений на основе оптимальной интерполяции
    📅 2022год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»
    Метод конверсационного анализа неструктурированных текстов социальных сетей
    📅 2021год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»