Формирование микрокристаллов производных аминокислот и их локальные пьезоэлектрические свойства : диссертация на соискание ученой степени кандидата физико-математических наук : 01.04.07

📅 2018 год
Нураева, А. С.
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Введение ………………………………………………………………………………………………………….. 5
Глава 1. Литературный обзор……………………………………………………………………….. 12
1.1 Пьезоэлектричество ………………………………………………………………………………… 12
1.1.1 Биоорганические пьезоэлектрики………………………………………………………. 16 1.1.2 Применение биоорганических пьезоэлектриков ………………………………… 18
1.2 Аминокислоты………………………………………………………………………………………… 20
1.2.1 Хиральность ……………………………………………………………………………………… 22 1.2.2 Молекулярная самосборка белков……………………………………………………… 25 1.2.3 Дифенилаланин…………………………………………………………………………………. 26 1.2.4 Физические свойства и применение микроструктур дифенилаланина … 32
1.3 Карбораны ……………………………………………………………………………………………… 34
1.4 Краткие выводы ……………………………………………………………………………………… 37
Глава 2. Исследуемые материалы, экспериментальные установки и методики экспериментов……………………………………………………………………………………………….. 39
2.1 Исследуемые материалы …………………………………………………………………………. 39 2.1.1 Микротрубки дифенилаланина………………………………………………………….. 39
2.1.2 Кристаллы производных аминокислот на основе орто-дикарборанов .. 40
2.2 Экспериментальные установки ……………………………………………………………….. 42
2.2.1 Оптическая микроскопия ………………………………………………………………….. 42 2.2.2 Сканирующая электронная микроскопия (СЭМ) ……………………………….. 42 2.2.3 Силовая микроскопия пьезоэлектрического отклика (СМПО) ……………. 43 2.2.4 Рентгеноструктурный анализ (РСА) ………………………………………………….. 45
2.3 Методики ……………………………………………………………………………………………….. 48
2.3.1 Методика кристаллизации микротрубок ……………………………………………. 48 2.3.2 Методика кристаллизации дикарборан-содержащих соединений……….. 48
3
2.3.3 Подготовка образов для измерения пьезоэлектрических свойств ……….. 49 2.3.4 Методика измерения эффективных локальных пьезоэлектрических коэффициентов …………………………………………………………………………………………. 49 2.3.5 Методика численных расчетов ………………………………………………………….. 51
2.4 Краткие выводы ……………………………………………………………………………………… 53
Глава3. Влияние хиральности молекул дифенилаланина на структуру, кинетику роста и пьезоэлектрические свойства микротрубок ……………………. 54
3.1 Морфология микротрубок энантиомеров FF ……………………………………………. 54 3.2 Кинетика роста микротрубок энантиомеров FF ……………………………………….. 58 3.3 Кристаллическая структура микротрубок энантиомеров FF …………………….. 60 3.4 Моделирование роста микротрубок энантиомеров FF ……………………………… 62 3.5 Пьезоэлектрические свойства микротрубок энантиомеров FF………………….. 67 3.6 Краткие выводы ……………………………………………………………………………………… 70
Глава4. Влияние включений наночастиц в микротрубках FF на их морфологию, кинетику роста и пьезоэлектрические свойства ……………………. 72
4.1 Морфология композитных микротрубок FF с наночастицами………………….. 72
4.2 Кинетика роста композитных микротрубок FF с наночастицами ……………… 75
4.3 Модель роста микротрубок FF в присутствии наночастиц……………………….. 76
4.4 Пьезоэлектрические свойства композитных микротрубок FF с наночастицами …………………………………………………………………………………………….. 78
4.5 Краткие выводы ……………………………………………………………………………………… 83
Глава 5. Влияние структуры монокристаллов дикарборан-содержащих производных аминокислот на их морфологию и пьезоэлектрические свойства. 84
5.1 Морфология монокристаллов дикарборан-содержащих производных аминокислот ………………………………………………………………………………………………… 84

4
5.2 Пьезоэлектрические свойства монокристаллов дикарборан-содержащих производных аминокислот……………………………………………………………………………. 85
5.3 Анализ структуры монокристаллов дикарборан-содержащих производных аминокислот ………………………………………………………………………………………………… 88
5.4 Краткие выводы ……………………………………………………………………………………… 93 Заключение ……………………………………………………………………………………………………. 94 Благодарности……………………………………………………………………………………………….. 96 Список сокращений и условных обозначений ……………………………………………… 97 Список литературы……………………………………………………………………………………… 100 Список публикаций по теме диссертации…………………………………………………… 117

Актуальность темы исследования и степень ее проработанности
В настоящее время внимание ученых направлено на поиск новых
органических пьезоэлектрических материалов вследствие их экологичности и
биосовместимости. Эти материалы могут быть использованы для создания
биосенсоров, элементов биосовместимых электромеханических устройств и
функциональных покрытий.
Одними из лучших кандидатов являются природные аминокислоты и их
производные благодаря своему структурному многообразию. Исследование
физических свойств кристаллов родственных производных аминокислот и анализ
их связи со структурой позволит выявить наиболее перспективные из них. Анализ
влияния включений, таких как наночастицы, может быть использован для
формирования материалов с заданными параметрами и свойствами.
Повышенный интерес к изучению микротрубок дипептида дифенилаланина
(FF), состоящего из двух остатков аминокислоты, обусловлен их выдающимися
механическими [1], нелинейно-оптическими [2] и пьезоэлектрическими
свойствами [3]. Модификация производных аминокислот с помощью карборанов
позволит получать новые соединения с высокой термической и
электрохимической стабильностью, обладающие выдающимися
пьезоэлектрическими свойствами.
Данная работа направлена на исследование формирования микротрубок FF
двух энантиомерных конфигураций и их композитных модификаций с
наночастицами оксидов, а также изучение локальных пьезоэлектрических свойств
микротрубок и монокристаллов производных аминокислот, содержащих остатки
орто-дикарборанов. Было подробно исследовано влияние наночастиц оксидов на
формирование и пьезоэлектрические свойства микротрубок FF. Кроме того, был
проведен анализ связи структуры и молекулярной упаковки с величиной

Систематические исследования кинетики роста микротрубок энантиомеров
дифенилаланина в чистом виде и с включениями наночастиц и их локальных
пьезоэлектрических свойств, а также локальных пьезоэлектрических свойств
кристаллов ряда дикарборан-содержащих производных аминокислот позволили
сделать следующие основные выводы:
1) Подробно изучена морфология и кинетика роста энантиомеров
дифенилаланина (FF) L- и D-конфигурации. Показано, что при меньшей
скорости роста микротрубки L-FF вырастают в два раза длиннее
микротрубок D-FF.
2) Впервые рассчитаны энергии взаимодействия колец из шести мономеров для
L-FF и D-FF, и предложен механизм образования различий в кинетике роста
микротрубок энантиомеров FF.
3) Сравнение измеренных пьезоэлектрических свойств L-FF с известными
свойствами энантиомера D-FF показало, что микротрубки энантиомеров
обладают близкими значениями пьезоэлектрического отклика.
4) Впервые исследована кинетика роста микротрубок FF в присутствие
наночастиц оксидов и предложена модель формирования полостей в
композитных микротрубках.
5) Исследование композитных микротрубок FF показало возможность
модификации их пьезоэлектрических свойств с помощью наночастиц
оксидов.
6) Систематическое исследование пьезоэлектрических свойств монокристаллов
ряда новых дикарборан-содержащих производных аминокислот позволило
обнаружить соединения, обладающие рекордной пьезоэлектрической
активностью.
7) Установлена связь пьезоэлектрических свойств монокристаллов родственных
соединений с молекулярной упаковкой, ориентацией водородных связей в
кристаллической решетке и структурой аминокислотного остатка.
Перспективы дальнейшей разработки темы

Полученные в ходе выполнения работы результаты будут использованы при
создании биосовместимых микроэлементов электромеханических устройств,
биосенсоров и устройств для накопления и преобразования энергии.
Целесообразно изучить влияние более широкого диапазона наночастиц
различных материалов, в частности обладающих значительной пьезоактивностью,
на пьезоэлектрические свойства, что позволит создавать микротрубки с
контролируемыми свойствами. Кроме того, необходимо исследовать
стабильность пьезоэлектрических свойств композитных микротрубок с
наночастицами и монокристаллов дикарборан-содержащих производных
аминокислот в широком диапазоне температур и влажности окружающей среды.
Благодарности

В заключение хочу поблагодарить всех, кто помогал мне в работе над
диссертацией, за поддержку и вдохновение.
В первую очередь хочу выразить благодарность моему научному
руководителю профессору Владимиру Яковлевичу Шуру за то, что являлся для
меня примером целеустремленного ученого, с вдохновением занимающегося
любимым делом, за его поддержку, за время, потраченное на мое обучение, за
предоставленную возможность работать над интересной темой.
Также хочется поблагодарить Андрея Леонидовича Холкина за активное
участие в выборе направления исследований, плодотворные обсуждение и
сотрудничество.
Особую благодарность хочется выразить Васильеву С.Г, Васильевой Д.С. и
Зеленовскому П.С. за помощь в освоении исследовательских методик и
проведении экспериментов, а также за их активное участие в обсуждении
результатов и подготовке материалов для текста диссертации.
Отдельное спасибо Южакову В.В. за помощь в подготовке образцов и
Линкеру Э.А. за помощь в создании графических материалов.
Спасибо коллективу лаборатории за теплую атмосферу, готовность прийти
на помощь в трудных ситуациях и приятные воспоминания.
Спасибо Уральскому федеральному университету, преподавателям и
сотрудникам Института естественных наук и математик за предоставленную
возможность обучаться в научном коллективе и работать на оборудовании
мирового класса.
Большое спасибо моей семье за их поддержку, терпение и веру в меня, а
также за проявленный неподдельный интерес к моей работе.

С уважением,
Алла Нураева
Список сокращений и условных обозначений

⃗ – вектор напряженности электрического поля
⃗ – вектор поляризации
A – колебания поверхности образца в результате обратного пьезоэлектрического
эффекта
a, b, c – кристаллографические оси
A0 – амплитуда пьезоэлектрических колебаний поверхности образца
C121, C2 – моноклинная группа симметрии
d15LN – пьезоэлектрический коэффициент ниобата лития
d15LT – пьезоэлектрический коэффициент танталата лития
d33Q – пьезоэлектрический коэффициент кварца
D-FF – энантиомер дифенилаланина D-конфигурации
D-FF/HFP – раствор мономеров D-FF в HFP с концентрацией 2 мг/мл
dijk, dij (i,j,k=1, 2, 3, 4, 5, 6) – пьезоэлектрический коэффициент
dL – эффективный локальный латеральный пьезоэлектрический коэффициент
DL (оно же LD) – смесь энантиомеров D- и L-конфигураций
dL(0) – эффективный локальный пьезоэлектрический коэффициент чистых
микротрубок FF
dloc – эффективный локальный вертикальный или латеральный
пьезоэлектрический коэффициент
dV – эффективный локальный вертикальный пьезоэлектрический коэффициент
E0 – минимум энергии взаимодействия двух колец при продольной и радиальной
агрегации
Ei ( = 1, 2, 3, 4, 5, 6) – напряженность электрического поля
F – фенилаланин
FF – дифенилаланин
HFP – 1,1,1,3,3,3-гексафторо-2-пропанол
l – высота кристалла в нормальном состоянии
L-FF – энантиомер дифенилаланина L-конфигурации
L-FF/HFP – раствор мономеров L-FF в HFP с концентрацией 2 мг/мл
LN – ниобат лития
LT – танталат лития
MEMS – микроэлектромеханические системы
p – полный дипольный момент
P22121 – ромбическая группа симметрии
P61, P65 – гексагональная группа симметрии
Pi (i=1, 2, 3, 4, 5, 6), – поляризация
PZT – цирконат-титанат свинца
Q – кварц
R- – правовращающая конфигурация «асимметричного» (хирального) атома
углерода в молекуле
R – расстояние между центрами двух колец FF из шести мономеров
R0 – равновесное расстояние между двумя кольцами при продольной и
радиальной агрегации
RS- (оно же SR-) – смесь энантиомеров R- и S-конфигураций
S- – левовращающая конфигурация «асимметричного» (хирального) атома
углерода в молекуле
SiO2 – наночастицы диоксида кремния
t – время
TiO2 – наночастицы диоксида титана
U – напряжение, прикладываемое к зонду
U – переменного напряжение, прикладываемое к зонду
U0 – амплитуда переменного напряжения, прикладываемого к зонду
ZnO – наночастицы оксида цинка
ΔE– изменение полной энергии системы
Δl – величина изменения высоты кристалла после приложения поля
εjk (j,k=1, 2, 3, 4, 5, 6) – деформация
σjk (j,k=1, 2, 3, 4, 5, 6) – механическое напряжение
φ – фаза пьезоэлектрического отклика
ω – частота переменного напряжения, , прикладываемого к зонду
АСМ – атомно-силовая микроскопия
ДНК – дезоксирибонуклеиновая кислота
ЖК – жидкие кристаллы
ММВС – межмолекулярные водородные связи
ОДА – ограниченная диффузией агрегация
ПВДФ – поливинилиденфторид
РНК –рибонуклеиновая кислота
РСА – рентгеноструктурный анализ
СМПО – силовая микроскопия пьезоэлектрического отклика
СЭМ – сканирующая электронная микроскопия
цикло-FF – циклизованная молекула FF

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Евгений А. доктор, профессор
    5 (154 отзыва)
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - ... Читать все
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - по социальной работе.
    #Кандидатские #Магистерские
    260 Выполненных работ
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Егор В. кандидат наук, доцент
    5 (428 отзывов)
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Ск... Читать все
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Скорее всего Ваш заказ будет выполнен раньше срока.
    #Кандидатские #Магистерские
    694 Выполненных работы
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ

    Последние выполненные заказы

    Другие учебные работы по предмету

    Радиационное упрочнение и оптические свойства материалов на основе SiO2
    📅 2022 год
    🏢 ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»
    Особенности формирования реальной структуры эпитаксиальных CVD-пленок алмаза с природным и модифицированным изотопным составом
    📅 2021 год
    🏢 ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»
    Исследование комплексной диэлектрической проницаемости конденсированных сред на основе новых методов терагерцовой импульсной спектроскопии
    📅 2021 год
    🏢 ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»