Контроль поглощённой подстилающей поверхностью солнечной энергии по данным спутникового мониторинга на основе спектрального подхода
ВВЕДЕНИЕ 4
Глава 1. ПРОГРАММНО-ТЕХНИЧЕСКОЕ И МЕТОДИЧЕ-
СКОЕ ОБЕСПЕЧЕНИЕ СПУТНИКОВОГО МОНИТОРИН-
ГА ПОГЛОЩЁННОЙ ПП ЭНЕРГИИ 13
1.1. Необходимость использованния спутниковых данных с высо-
ким пространственным разрешением . . . . . . . . . . . . . . 13
1.2. Возможности программного комплекса MODTRAN как мо-
делирующего инструмента . . . . . . . . . . . . . . . . . . . . 17
1.3. Современные методы контроля поглощённой ПП энергии . . 19
1.4. Гибридный метод контроля поглощённой ПП энергии . . . . 24
Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Глава 2. МЕТОД КОНТРОЛЯ ПОГЛОЩЁННОЙ ПП ЭНЕР-
ГИИ С ИСПОЛЬЗОВАНИЕМ MODTRAN 31
2.1. Оценка влияния параметров атмосферы, ПП и условий на-
блюдения на исследуемые спектры . . . . . . . . . . . . . . . 31
2.2. Входные и выходные файлы MODTRAN . . . . . . . . . . . 33
2.3. Итерационная методика восстановления спектрального аль-
бедо и её сравнительная валидация . . . . . . . . . . . . . . 36
2.4. Расчёт спектра падающего на ПП излучения . . . . . . . . . 42
2.5. Алгоритм восстановления поглощённой ПП энергии и его ре-
ализация . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6. Верификация разработанного метода . . . . . . . . . . . . . 44
Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Глава 3. ОПЕРАТИВНЫЙ КОНТРОЛЬ ПОГЛОЩЁННОЙ ПП
ЭНЕРГИИ НА ОСНОВЕ ОПОРНЫХ СПЕКТРОВ 49
3.1. Метод опорных спектров . . . . . . . . . . . . . . . . . . . . 49
3.1.1. Опорные спектры . . . . . . . . . . . . . . . . . . . . . 49
3.1.2. Аппроксимация функций преобразования . . . . . . . 50
3.2. Восстановление спектра прямого падающего излучения . . . 56
3.3. Восстановление спектра падающего рассеянного излучения . 61
3.3.1. Выбор опорного спектра . . . . . . . . . . . . . . . . . 61
3.3.2. Расчёт спектра падающего рассеянного излучения при
нулевом альбедо . . . . . . . . . . . . . . . . . . . . . 66
3.3.3. Расчёт спектра падающего рассеянного излучения с
учётом альбедо . . . . . . . . . . . . . . . . . . . . . . 69
3.4. Восстановление спектрального альбедо ПП . . . . . . . . . . 75
3.4.1. Алгоритм восстановления спектрального альбедо ПП 75
3.4.2. Восстановление спектров интенсивности на ВГА при
нулевом и единичном альбедо . . . . . . . . . . . . . . 76
3.4.3. Восстановление спектрального альбедо ПП . . . . . . 80
Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Глава 4. ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ МЕТОДА ОПЕ-
РАТИВНОГО КОНТРОЛЯ ПОГЛОЩЁННОЙ ПП ЭНЕР-
ГИИ 84
4.1. Программный комплекс для аппроксимации функций преоб-
разования и восстановления искомых спектров . . . . . . . . 84
4.2. Программный модуль для практической реализации метода
оперативного контроля поглощенной ПП энергии . . . . . . 91
4.3. Верификация и практическое применение разработанного ме-
тода . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
ЗАКЛЮЧЕНИЕ 100
Приложение А. Сцены MODIS для верификации 102
Приложение Б. Коэффициенты аппроксимации функции пре-
образования падающего рассеянного потока излучения 103
Приложение В. Акты и свидетельства 107
Литература 110
Актуальность проблемы. Поглощённая подстилающей поверхностью
солнечная энергия оказывает ключевое влияние на процессы испарения,
прогрев воздуха и почвы, формирование облаков, циркуляцию атмосферы
и климат на региональном и глобальном уровне [1–10].
Существует два принципиально разных подхода к решению задачи кон-
троля поглощённой подстилающей поверхностью (ПП) энергии: использо-
вание наземных станций, определяющих количество падающей и отражён-
ной энергии, и данных спутниковых приборов, измеряющих уходящее из-
лучение. Первый подход отличается простотой реализации, имеет ряд пре-
имуществ и недостатков. Преимуществами являются возможность прове-
дения круглосуточного мониторинга и отслеживания динамики изменения
количества поглощённой энергии, а также высокая точность полученных
данных. Основной недостаток станций наземного наблюдения заключается
в локальном измерении поглощённой энергии, что делает невозможным мо-
ниторинг обширных и неоднородных по свойствам ПП территорий [11–15].
Приборы, вынесенные на спутниковые платформы, позволяют прово-
дить мониторинг больших территорий [13, 16–30]. Исследования послед-
них десятилетий была основаны на обработке спутниковых данных низ-
кого пространственного разрешения, полученных в результате глобальных
экспериментов 80-90-х годов, таких как ERBE (2.5◦) [13, 24] и ISCCP (280
км) [17, 21]. В настоящее время в основном используются данные высо-
кого пространственного разрешения платформ Terra, Aqua, Suomi NPP и
регрессионные методы, позволяющие восстанавливать поглощённую энер-
гию по интенсивности излучения на верхней границе атмосферы (ВГА).
Однако, эти методы связаны с конкретными спутниками и каналами спек-
трорадиометра, что ограничивает их временное разрешение и точность.
Работы, реализующие эти методы, демонстрируют значительный разброс
в полученной ими погрешности восстановления поглощённой энергии (50-
120 Вт/м2) [13,20,22,24–30]. Попытки применить их на других территориях
не подтверждают указанные в них погрешности [25, 26, 31]. Эти результа-
ты можно объяснить использованием стандартных наборов альбедо ПП и
ограниченного числа спектральных каналов, ошибками пространственной
и временной синхронизации данных в методиках верификации. На данный
момент не существует методов, обеспечивающих высокую точность контро-
ля поглощённой ПП энергии на обширных территориях и не связанных с
данными конкретных спутниковых платформ и каналов спектрорадиомет-
ра, поэтому разработка такого метода является актуальной научной зада-
чей [14, 32–39]. В качестве перспективного варианта решения этой задачи
предлагается гибридный метод на основе спутниковых данных высокого
пространственного разрешения (до 10 × 10 км2), в котором контроль по-
глощённой ПП энергии осуществляется через восстановление спектров —
потока падающего излучения и альбедо ПП, с использованием программно-
го комплекса MODTRAN5.2.1 или опорных спектров [40–42]. Такой метод
не связан с конкретными спутниковыми платформами, каналами спектро-
радиометра и территориями.
Целью исследования является разработка нового гибридного метода
контроля поглощённой ПП энергии по данным спутникового мониторинга
на основе спектрального подхода и восстановления спектрального альбедо.
Для достижения поставленной цели решаются следующие задачи, в
рамках которых разрабатываются:
1. Итерационная методика восстановления спектрального альбедо по от-
кликам в каналах спектрорадиометра в оптическом и ближнем инфракрас-
ном диапазонах.
2. Метод контроля поглощённой ПП энергии на основе спектрального
подхода и восстановления спектрального альбедо, реализованный с исполь-
зованием MODTRAN5.2.1.
3. Метод опорных спектров и методика аппроксимации функций преоб-
разования для восстановления искомых спектров.
4. Программный комплекс для аппроксимации функций преобразования.
5. Метод оперативного контроля поглощённой ПП энергии на основе
опорных спектров.
6. Программный модуль для оперативного контроля поглощённой ПП
энергии.
7. Методики верификации полученных результатов по данным сети на-
земных станций SURFRAD.
Объектом исследования являются спектральные зависимости пото-
ков и интенсивностей излучения при вариациях параметров атмосферы,
ПП и условий наблюдения.
Предмет исследования — методы контроля поглощённой ПП солнеч-
ной энергии.
Данная область исследований соответствует следующим пунктам пас-
порта специальности ВАК 05.11.13: п.1. «научное обоснование новых и
усовершенствование существующих методов аналитического и неразруша-
Помогаем с подготовкой сопроводительных документов
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!