Методы машинного обучения при обработке изображений сверхвысокого пространственного разрешения на примере задач классификации растительности

Сафонова, Анастасия Николаевна

ВВЕДЕНИЕ …………………………………………………………………………………………………….. 5
1 АНАЛИЗ МОДЕЛЕЙ СНС ПРИ РЕШЕНИИ ЗАДАЧ КЛАССИФИКАЦИИ
ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ ………………………………………………………………. 12
1.1 Современные СНС при решении задач классификации объектов на
изображениях……………………………………………………………………………………………… 12
1.1.1 Слой свертки……………………………………………………………………………………. 15
1.1.2 Слой пулинга или субдискретизации ……………………………………………….. 19
1.1.3 Полносвязный слой………………………………………………………………………….. 21
1.2 Анализ моделей СНС в задачах обработки изображений ДЗЗ …………………. 22
1.2.1 Классификация растительности на изображениях высокого и
сверхвысокого пространственного разрешения с использованием методов
СНС…………………………………………………………………………………………………………. 22
1.2.2 Модель VGG ……………………………………………………………………………………. 30
1.2.3 Модель ResNet …………………………………………………………………………………. 32
1.2.4 Модель Inception ……………………………………………………………………………… 32
1.2.5 Модель InceptionResNet …………………………………………………………………… 33
1.2.6 Модель Xception ………………………………………………………………………………. 34
1.2.7 Модель DenseNet ……………………………………………………………………………… 35
1.2.8 Преимущества СНС …………………………………………………………………………. 35
1.2.9 Недостатки СНС………………………………………………………………………………. 36
1.3 Проблемы, выдвигаемые для решения с использованием СНС ………………. 37
1.4 Выводы …………………………………………………………………………………………………. 39
2 РАЗРАБОТКА АЛГОРИТМОВ И АРХИТЕКТУРЫ СНС ПРИ ОБРАБОТКЕ
ИЗОБРАЖЕНИЙ СВЕРХВЫСОКОГО ПРОСТРАНСТВЕННОГО РАЗРЕШЕНИЯ
……………………………………………………………………………………………………………………… 41
2.1 Алгоритм построения и искусственного увеличения набора данных
изображений ………………………………………………………………………………………………. 41
2.2 Разработка новой архитектуры СНС………………………………………………………. 43
2.3 Методика формирования контрольной выборки на изображениях
сверхвысокого пространственного разрешения …………………………………………… 46
2.4 Модификация алгоритма сегментации изображений сверхвысокого
пространственного разрешения …………………………………………………………………… 49
2.5 Метрики оценки эффективности ……………………………………………………………. 50
2.6 Выводы …………………………………………………………………………………………………. 52
3 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ РАЗРАБОТАННОЙ
АРХИТЕКТУРЫ СНС И АЛГОРИТМОВ ………………………………………………………. 54
3.1 Тестовый участок и формирование набора данных ………………………………… 54
3.1.1 Тестовый участок и материалы ДЗЗ …………………………………………………. 54
3.1.2 Подготовка обучающего набора данных и его искусственное увеличение
………………………………………………………………………………………………………………… 57
3.1.3 Подготовка тестового набора данных для независимой проверки …….. 60
3.2 Результаты обучения новой архитектуры СНС. ……………………………………… 62
Сравнение с современными архитектурами СНС ………………………………………… 62
3.3 Результаты тестирования новой архитектуры СНС ………………………………… 65
3.4 Выводы …………………………………………………………………………………………………. 69
4 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПРИМЕНЕНИЯ
МОДИФИЦИРОВАННОГО АЛГОРИТМА СЕГМЕНТАЦИИ ИЗОБРАЖЕНИЙ
СВЕРХВЫСОКОГО ПРОСТРАНСТВЕННОГО РАЗРЕШЕНИЯ ……………………. 71
4.1 Тестовый участок и формирование набора данных ………………………………… 71
4.2 Результаты экспериментальных исследований применения
модифицированного алгоритма сегментации изображений на основе СНС
ResNet50 и ResNet101 …………………………………………………………………………………. 77
4.3 Выводы ………………………………………………………………………………………………… 81
ЗАКЛЮЧЕНИЕ …………………………………………………………………………………………….. 82
СПИСОК ИСПОЛЬЗОВАННЫХ СОКРАЩЕНИЙ…………………………………………. 84
СПИСОК ЛИТЕРАТУРЫ………………………………………………………………………………. 85
ПРИЛОЖЕНИЕ А …………………………………………………………………………………………. 99
ПРИЛОЖЕНИЕ Б ………………………………………………………………………………………… 102
ПРИЛОЖЕНИЕ В ……………………………………………………………………………………….. 104

Актуальность работы. Искусственные нейронные сети (ИНС) в настоящее
время переживают свое второе рождение, что, в первую очередь, обусловлено
увеличением вычислительных мощностей современных компьютеров и
появлением сверхбольших наборов данных для обучения, присутствующих в
глобальных сетях. На основе ИНС разрабатываются решения в области
классификации данных, сегментации изображений дистанционного зондирования
Земли (ДЗЗ), поддержки принятия решений, сопоставимые по качеству, а зачастую
превышающие результаты, полученные на основе классических методов
распознавания образов.
Прикладная область диссертационного исследования связана с решением
задач сегментации, классификации и категоризации характера повреждения
растительности на основе использования сверточных нейронных сетей (СНС). В
последнее время активно ведутся исследования в работах ученых США, Китая,
Испании, Бразилии, Швейцарии, Германии, Украины, Швеции, Дании, Турции,
России и других стран G.B. Bonan, M.C. Hansen, Z. Ma, W. Li, E. Guirado, S. Tabik,
R. Baeta, N. Kussul, L.T. Waser, Z. Deli, M. Längkvist, M. Dyrmann, S. Razavi, С.А.
Кривца, И.А. Керчева, Э.М. Бисирова, Д.А. Демидко, Н.В. Пашеновой, Ю.Н.
Баранчикова, В.М. Петько, С.А. Астапенко, Е.Н. Акулова, А.Н. Горбань, М.Н.
Фаворской, Л.Ф. Ноженковой и др., позволяющие классифицировать
растительность на основе применения таких СНС, как Inception, ResNet, DenseNet,
RCNN, VGG, а также классических методов, включая OBIA.
Однако, зачастую при решении новых классов задач внутри рассматриваемой
прикладной области возникают проблемы, связанные с малыми объемами выборки
и недостаточным качеством исходного материала для обучения, что определяет
актуальность исследования и разработки новых методов и алгоритмов
классификации категорий повреждения растительности на основе машинного
обучения, а именно СНС, позволяющих обеспечить лучшее качество
распознавания в условиях малых выборок и ограниченного количества
спектральных каналов.

Представленная диссертационная работа содержит описание и результаты
тестирования разработанных методов машинного обучения при обработке
изображений сверхвысокого пространственного разрешения в условиях малых
выборок по искусственно увеличенным данным на примере задач сегментации,
классификации и категоризации характера повреждения растительности.
Основные научные и практические результаты работы заключаются в следующем:

1. Проведен анализ современных алгоритмов СНС и их использования при
решении задач классификации объектов, представленных на мультиспектральных
и трехканальных изображениях сверхвысокого пространственного разрешения,
позволяющий определить основные направления исследования в области
разработки эффективных алгоритмов СНС для обработки данных ДЗЗ.
2. Разработан алгоритм построения и искусственного увеличения
размеченного набора данных на изображениях сверхвысокого пространственного
разрешения в условиях малых выборок.
3. Разработана новая архитектура СНС для задач точной классификации
размеченного набора данных на трехканальных цветных изображениях
сверхвысокого пространственного разрешения.
4. Разработана новая методика формирования контрольной выборки на
трехканальных цветных изображениях сверхвысокого пространственного
разрешения в условиях малых выборок для проведения тестирования
разработанной архитектуры СНС и ее сравнения с современными моделями СНС.
5. Проведено модифицирование алгоритма сегментации изображений
сверхвысокого пространственного разрешения в условиях малых выборок на
основе СНС ResNet50 и ResNet101 для построения маски регионов объектов.
6. Выполнены экспериментальные исследования по разработанным
архитектурам СНС и алгоритмам на тестовых участках: заповедник «Столбы»,
расположенный на северо-востоке от города Красноярск в Центральной Сибири
Российской Федерации по данным изображений, полученных с БПЛА за 2016, 2018
гг.; плантация оливковых деревьев Picular, расположенная на севере города
Гранады, Андалусия, Испания по данным изображений БПЛА за 2019 г.
7. Произведено вычисление основных параметров метрики оценки
разработанной архитектуры СНС с использованием различных наборов данных
изображений сверхвысокого пространственного разрешения. По проведенным
расчетам выявлено, что от использования искусственного увеличения тестового
набора данных для обучения СНС доля правильных ответов (accuracy), точность
(precision) и F-мера (F_score) улучшились на 14,5%, 20,4% и 34,3% соответственно.
СПИСОК ИСПОЛЬЗОВАННЫХ СОКРАЩЕНИЙ

ДЗЗ – дистанционное зондирование земли
ИНС – искусственные нейронные сети
СНС – сверточные нейронные сети
БПЛА – беспилотный летательный аппарат
RGB – red-green-blue (красный-зеленый-синий)
P. proximus – Polygraphus proximus Blandford
ReLU – rectified linear unit
ILSVCC – imagenet large scale visual classification challenge
VGG – visual geometry group
ResNet – residential network
MS COCO – microsoft common objects in context
ADAM – adaptive moment estimation
NIR – near infrared
TN – true negative
TP – true positive
FN – false negative
FP – false positive
GPU – graphics processing unit
NDVI – normalized difference vegetation index
GNDVI – green normalized difference vegetation index

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Анна С. СФ ПГУ им. М.В. Ломоносова 2004, филологический, преподав...
    4.8 (9 отзывов)
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания... Читать все
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания и проверки (в качестве преподавателя) контрольных и курсовых работ.
    #Кандидатские #Магистерские
    16 Выполненных работ
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы

    Другие учебные работы по предмету

    Расширенное суперпиксельное представление изображений для их обработки и анализа
    📅 2022год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»
    Метод восстановления динамических изображений на основе оптимальной интерполяции
    📅 2022год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»
    Метод конверсационного анализа неструктурированных текстов социальных сетей
    📅 2021год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»