Методы машинного обучения при обработке изображений сверхвысокого пространственного разрешения на примере задач классификации растительности

Сафонова, Анастасия Николаевна

ВВЕДЕНИЕ …………………………………………………………………………………………………….. 5
1 АНАЛИЗ МОДЕЛЕЙ СНС ПРИ РЕШЕНИИ ЗАДАЧ КЛАССИФИКАЦИИ
ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ ………………………………………………………………. 12
1.1 Современные СНС при решении задач классификации объектов на
изображениях……………………………………………………………………………………………… 12
1.1.1 Слой свертки……………………………………………………………………………………. 15
1.1.2 Слой пулинга или субдискретизации ……………………………………………….. 19
1.1.3 Полносвязный слой………………………………………………………………………….. 21
1.2 Анализ моделей СНС в задачах обработки изображений ДЗЗ …………………. 22
1.2.1 Классификация растительности на изображениях высокого и
сверхвысокого пространственного разрешения с использованием методов
СНС…………………………………………………………………………………………………………. 22
1.2.2 Модель VGG ……………………………………………………………………………………. 30
1.2.3 Модель ResNet …………………………………………………………………………………. 32
1.2.4 Модель Inception ……………………………………………………………………………… 32
1.2.5 Модель InceptionResNet …………………………………………………………………… 33
1.2.6 Модель Xception ………………………………………………………………………………. 34
1.2.7 Модель DenseNet ……………………………………………………………………………… 35
1.2.8 Преимущества СНС …………………………………………………………………………. 35
1.2.9 Недостатки СНС………………………………………………………………………………. 36
1.3 Проблемы, выдвигаемые для решения с использованием СНС ………………. 37
1.4 Выводы …………………………………………………………………………………………………. 39
2 РАЗРАБОТКА АЛГОРИТМОВ И АРХИТЕКТУРЫ СНС ПРИ ОБРАБОТКЕ
ИЗОБРАЖЕНИЙ СВЕРХВЫСОКОГО ПРОСТРАНСТВЕННОГО РАЗРЕШЕНИЯ
……………………………………………………………………………………………………………………… 41
2.1 Алгоритм построения и искусственного увеличения набора данных
изображений ………………………………………………………………………………………………. 41
2.2 Разработка новой архитектуры СНС………………………………………………………. 43
2.3 Методика формирования контрольной выборки на изображениях
сверхвысокого пространственного разрешения …………………………………………… 46
2.4 Модификация алгоритма сегментации изображений сверхвысокого
пространственного разрешения …………………………………………………………………… 49
2.5 Метрики оценки эффективности ……………………………………………………………. 50
2.6 Выводы …………………………………………………………………………………………………. 52
3 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ РАЗРАБОТАННОЙ
АРХИТЕКТУРЫ СНС И АЛГОРИТМОВ ………………………………………………………. 54
3.1 Тестовый участок и формирование набора данных ………………………………… 54
3.1.1 Тестовый участок и материалы ДЗЗ …………………………………………………. 54
3.1.2 Подготовка обучающего набора данных и его искусственное увеличение
………………………………………………………………………………………………………………… 57
3.1.3 Подготовка тестового набора данных для независимой проверки …….. 60
3.2 Результаты обучения новой архитектуры СНС. ……………………………………… 62
Сравнение с современными архитектурами СНС ………………………………………… 62
3.3 Результаты тестирования новой архитектуры СНС ………………………………… 65
3.4 Выводы …………………………………………………………………………………………………. 69
4 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПРИМЕНЕНИЯ
МОДИФИЦИРОВАННОГО АЛГОРИТМА СЕГМЕНТАЦИИ ИЗОБРАЖЕНИЙ
СВЕРХВЫСОКОГО ПРОСТРАНСТВЕННОГО РАЗРЕШЕНИЯ ……………………. 71
4.1 Тестовый участок и формирование набора данных ………………………………… 71
4.2 Результаты экспериментальных исследований применения
модифицированного алгоритма сегментации изображений на основе СНС
ResNet50 и ResNet101 …………………………………………………………………………………. 77
4.3 Выводы ………………………………………………………………………………………………… 81
ЗАКЛЮЧЕНИЕ …………………………………………………………………………………………….. 82
СПИСОК ИСПОЛЬЗОВАННЫХ СОКРАЩЕНИЙ…………………………………………. 84
СПИСОК ЛИТЕРАТУРЫ………………………………………………………………………………. 85
ПРИЛОЖЕНИЕ А …………………………………………………………………………………………. 99
ПРИЛОЖЕНИЕ Б ………………………………………………………………………………………… 102
ПРИЛОЖЕНИЕ В ……………………………………………………………………………………….. 104

Актуальность работы. Искусственные нейронные сети (ИНС) в настоящее
время переживают свое второе рождение, что, в первую очередь, обусловлено
увеличением вычислительных мощностей современных компьютеров и
появлением сверхбольших наборов данных для обучения, присутствующих в
глобальных сетях. На основе ИНС разрабатываются решения в области
классификации данных, сегментации изображений дистанционного зондирования
Земли (ДЗЗ), поддержки принятия решений, сопоставимые по качеству, а зачастую
превышающие результаты, полученные на основе классических методов
распознавания образов.
Прикладная область диссертационного исследования связана с решением
задач сегментации, классификации и категоризации характера повреждения
растительности на основе использования сверточных нейронных сетей (СНС). В
последнее время активно ведутся исследования в работах ученых США, Китая,
Испании, Бразилии, Швейцарии, Германии, Украины, Швеции, Дании, Турции,
России и других стран G.B. Bonan, M.C. Hansen, Z. Ma, W. Li, E. Guirado, S. Tabik,
R. Baeta, N. Kussul, L.T. Waser, Z. Deli, M. Längkvist, M. Dyrmann, S. Razavi, С.А.
Кривца, И.А. Керчева, Э.М. Бисирова, Д.А. Демидко, Н.В. Пашеновой, Ю.Н.
Баранчикова, В.М. Петько, С.А. Астапенко, Е.Н. Акулова, А.Н. Горбань, М.Н.
Фаворской, Л.Ф. Ноженковой и др., позволяющие классифицировать
растительность на основе применения таких СНС, как Inception, ResNet, DenseNet,
RCNN, VGG, а также классических методов, включая OBIA.
Однако, зачастую при решении новых классов задач внутри рассматриваемой
прикладной области возникают проблемы, связанные с малыми объемами выборки
и недостаточным качеством исходного материала для обучения, что определяет
актуальность исследования и разработки новых методов и алгоритмов
классификации категорий повреждения растительности на основе машинного
обучения, а именно СНС, позволяющих обеспечить лучшее качество
распознавания в условиях малых выборок и ограниченного количества
спектральных каналов.

Представленная диссертационная работа содержит описание и результаты
тестирования разработанных методов машинного обучения при обработке
изображений сверхвысокого пространственного разрешения в условиях малых
выборок по искусственно увеличенным данным на примере задач сегментации,
классификации и категоризации характера повреждения растительности.
Основные научные и практические результаты работы заключаются в следующем:

1. Проведен анализ современных алгоритмов СНС и их использования при
решении задач классификации объектов, представленных на мультиспектральных
и трехканальных изображениях сверхвысокого пространственного разрешения,
позволяющий определить основные направления исследования в области
разработки эффективных алгоритмов СНС для обработки данных ДЗЗ.
2. Разработан алгоритм построения и искусственного увеличения
размеченного набора данных на изображениях сверхвысокого пространственного
разрешения в условиях малых выборок.
3. Разработана новая архитектура СНС для задач точной классификации
размеченного набора данных на трехканальных цветных изображениях
сверхвысокого пространственного разрешения.
4. Разработана новая методика формирования контрольной выборки на
трехканальных цветных изображениях сверхвысокого пространственного
разрешения в условиях малых выборок для проведения тестирования
разработанной архитектуры СНС и ее сравнения с современными моделями СНС.
5. Проведено модифицирование алгоритма сегментации изображений
сверхвысокого пространственного разрешения в условиях малых выборок на
основе СНС ResNet50 и ResNet101 для построения маски регионов объектов.
6. Выполнены экспериментальные исследования по разработанным
архитектурам СНС и алгоритмам на тестовых участках: заповедник «Столбы»,
расположенный на северо-востоке от города Красноярск в Центральной Сибири
Российской Федерации по данным изображений, полученных с БПЛА за 2016, 2018
гг.; плантация оливковых деревьев Picular, расположенная на севере города
Гранады, Андалусия, Испания по данным изображений БПЛА за 2019 г.
7. Произведено вычисление основных параметров метрики оценки
разработанной архитектуры СНС с использованием различных наборов данных
изображений сверхвысокого пространственного разрешения. По проведенным
расчетам выявлено, что от использования искусственного увеличения тестового
набора данных для обучения СНС доля правильных ответов (accuracy), точность
(precision) и F-мера (F_score) улучшились на 14,5%, 20,4% и 34,3% соответственно.
СПИСОК ИСПОЛЬЗОВАННЫХ СОКРАЩЕНИЙ

ДЗЗ – дистанционное зондирование земли
ИНС – искусственные нейронные сети
СНС – сверточные нейронные сети
БПЛА – беспилотный летательный аппарат
RGB – red-green-blue (красный-зеленый-синий)
P. proximus – Polygraphus proximus Blandford
ReLU – rectified linear unit
ILSVCC – imagenet large scale visual classification challenge
VGG – visual geometry group
ResNet – residential network
MS COCO – microsoft common objects in context
ADAM – adaptive moment estimation
NIR – near infrared
TN – true negative
TP – true positive
FN – false negative
FP – false positive
GPU – graphics processing unit
NDVI – normalized difference vegetation index
GNDVI – green normalized difference vegetation index

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Вики Р.
    5 (44 отзыва)
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написан... Читать все
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написание письменных работ для меня в удовольствие.Всегда качественно.
    #Кандидатские #Магистерские
    60 Выполненных работ
    Ольга Б. кандидат наук, доцент
    4.8 (373 отзыва)
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских... Читать все
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских диссертаций, дипломных и курсовых работ. Слежу за новинками в медицине.
    #Кандидатские #Магистерские
    566 Выполненных работ
    Мария Б. преподаватель, кандидат наук
    5 (22 отзыва)
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальнос... Читать все
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальности "Экономика и управление народным хозяйством". Автор научных статей.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ

    Другие учебные работы по предмету

    Расширенное суперпиксельное представление изображений для их обработки и анализа
    📅 2022год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»
    Метод восстановления динамических изображений на основе оптимальной интерполяции
    📅 2022год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»
    Метод конверсационного анализа неструктурированных текстов социальных сетей
    📅 2021год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»