Нагревание светодиодных люминофоров при преобразовании энергии возбуждения в люминесценцию
ВВЕДЕНИЕ……………………………………………………………………… 5
1 ЛИТЕРАТУРНЫЙ ОБЗОР ПО ПРОБЛЕМЕ………………………….. 13
1.1 Светодиоды. Принципы работы ………………………………………. 13
1.2 Белый светодиод ……………………………………………………….. 17
1.2.1 Люминофоры для белого светодиода ………………………………… 21
1.3 Зависимость излучения СД от температуры………………………….. 27
1.3.1 Зависимость излучательных характеристик чипа от режимов
питания…………………………………………………………………… 28
1.3.2 Отвод тепла от СД………………………………………………………. 30
1.3.3 Теплоотвод………………………………………………………………. 33
1.3.4 Методы измерения температуры люминофора в СД………………… 34
1.4 Влияние температуры на люминесценцию ИАГ:Се люминофоров… 37
1.4.1 Энергетическая структура иона Ce3+ в решётке иттрий
алюминиевого граната………………………………………………….. 40
1.4.2 Механизм температурного тушения люминесценции YAG
люминофора……………………………………………………………… 43
1.5 Выводы по главе 1………………………………………………………. 44
2 МАТЕРИАЛЫ ДЛЯ ИССЛЕДОВАНИЙ. МЕТОДЫ
ИССЛЕДОВАНИЙ СТРУКТУРЫ ЛЮМИНОФОРОВ………………. 46
2.1 Люминофоры для исследований………………………………………. 47
2.2 Морфология исследованных люминофоров……………………….….. 48
2.3 Элементный анализ люминофоров……………………………………. 52
2.3.1 Энергодисперсионный анализ при электронном возбуждении…… 52
2.4 Рентгеноструктурный анализ (XRD)…………………………………… 54
2.5 Выводы по главе 2………………………………………………………. 56
3 ИЗЛУЧАТЕЛЬНЫЕ СВОЙСТВА ИАГ ЛЮМИНОФОРОВ………… 57
3.1 Спектры возбуждения и люминесценции……………………………… 58
3.2 Спектры катодолюминесценции………………………………………. 66
3.3 Энергетический выход излучения люминофоров…………………….. 67
3.4 Цветовые характеристики исследованных люминофоров…………… 73
3.5 Кинетика релаксации люминесценции………………………………… 74
3.6 Выводы по главе 3………………………………………………………. 81
4 ПОТЕРИ ЭНЕРГИИ ВОЗБУЖДЕНИЯ В ЛЮМИНОФОРЕ СД…….. 83
4.1 Модель расчёта потерь энергии возбуждения………………………… 84
4.2 Расчёт минимальных потерь энергии при преобразовании………….. 90
4.3 Экспериментальная проверка нагрева люминофора при
возбуждении…………………………………………………………….. 95
4.4 Выводы по главе 4……………………………………………………… 101
5 ТЕМПЕРАТУРНОЕ ТУШЕНИЕ ЛЮМИНЕСЦЕНЦИИ ИАГ:Се
ЛЮМИНОФОРОВ……………………………………………………… 103
5.1 Зависимость спектров люминесценции от температуры…………….. 103
5.2 Результаты исследования температурной зависимости тушения
люминесценции…………………………………………………………. 110
5.3 Зависимость цветности излучения от температуры………………….. 113
5.4 Модель температурного тушения люминесценции в ИАГГ:Се3+…… 116
5.5 Выводы по главе 5……………………………………………………….. 119
6 ИЗМЕНЕНИЕ ТЕМПЕРАТУРЫ ЛЮМИНОФОРА ЗА СЧЁТ
ЭНЕРГИИ, ВЫДЕЛЯЮЩЕЙСЯ ПРИ ПРЕОБРАЗОВАНИИ
ИЗЛУЧЕНИЯ ВОЗБУЖДЕНИЯ……………………………………….. 121
6.1 Методика измерения температуры нагрева…………………………… 124
6.2 Кинетика тушения люминесценции при воздействии лазерного
излучения………………………………………………………………… 128
6.3 Обсуждение результатов исследования влияния воздействия
лазерного излучения на тушение люминесценции…………………… 132
6.4 Выводы по главе 6………………………………………………………. 136
ЗАКЛЮЧЕНИЕ…………………………………………………………….…… 138
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ………….…… 144
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ………………………….… 145
Актуальность темы исследования. Белые светодиоды (светодиоды,
излучающие свет во всём видимом диапазоне, БСД) впервые появились в 1996
году, имели световую отдачу 5 Лм/Вт. За последние 20 лет был достигнут большой
прогресс в их совершенствовании. Световая отдача современных БСД
приближается к 150 Лм/Вт. Современные БСД значительно превосходят по своим
характеристикам другие источники света: лампы накаливания, люминесцентные,
газоразрядные. Основными функциональными элементами БСД являются чип и
люминофор, преобразующий УФ или синее излучение чипа в люминесценцию.
Эффективность преобразования подводимой светодиодом электроэнергии в
световую определяется чипом и люминофором, цветовые характеристики –
люминофором, старение – в основном люминофором. Этим обусловлен большой
интерес к изучению люминофоров, разработке новых люминофоров и технологий
синтеза люминофоров. В настоящее время, с точки зрения эффективности и
стабильности самыми распространёнными и перспективными для БСД являются
люминофоры на основе иттрий-алюминиевого граната (ИАГ, YAG),
активированного ионами Ce3+ (Y3Al5O12:Се).
Люминофоры на основе YAG:Ce возбуждаются свечением чипов на основе
InGaN/GaN, излучающих в синем спектральном диапазоне; излучают в широкой
видимой области спектра с максимумом около 550 нм; отличаются высокой
химической и оптической стабильностью, коротким временем жизни центров
свечения в возбуждённом состоянии. С введением активаторов, соактиваторов,
модификаторов возможно смещение полосы излучения в диапазоне от 525 до 585
нм, изменение формы полосы и, соответственно, цветовой температуры в
диапазоне от 5000 до 6500 К.
К настоящему времени уже достигнут большой прогресс в повышении
излучательных и эксплуатационных характеристик чипов на основе InGaN/GaN.
Способствует этому развитие различных технологий в выращивании (создании)
гетероструктур. Современные чипы обеспечивают высокие излучательные
характеристики.
Активно ведётся разработка новых люминофоров, технологии их синтеза.
Необходимы люминофоры с различными спектральными характеристиками для
разных назначений. Растёт световая отдача БСД, увеличиваются требования к
качеству света, цветовым характеристикам БСД, которые определяются в
основном люминофором. Поэтому поиск путей совершенствования излучательных
характеристик люминофоров является актуальной задачей для современной
светодиодной промышленности.
Одной из важнейших характеристик люминофоров, влияющих на
функциональные свойства светодиодов, является зависимость излучательных
характеристик от температуры. С ростом температуры наблюдается тушение
Помогаем с подготовкой сопроводительных документов
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!